Spectral Analysis of an Aeronautical Lean Direct Injection Burner Through Large Eddy Simulation

Author(s):  
M. Carreres ◽  
L. M. García-Cuevas ◽  
J. García-Tíscar ◽  
M. Belmar-Gil

Abstract During the last decades, many efforts have been invested by the scientific community in minimising exhaust emissions from aeronautical gas turbine engines. In this context, many advanced ultra-low NOx combustion concepts, such as the Lean Direct Injection treated in the present study, are being developed to abide by future regulations. Numerical simulations of these devices are usually computationally expensive since they imply a multi-scale problem. In this work, a non-reactive Large Eddy Simulation of a gaseous-fuelled, radial-swirled Lean-Direct Injection (LDI) combustor has been carried out through the OpenFOAM Computational Fluid Dynamics (CFD) code by solving the complete inlet flow path through the swirl vanes and the combustor. The geometry considered is the gaseous configuration of the CORIA LDI combustor, for which detailed measurements are available. Macroscopical analysis of the main turbulent features related to the swirling flow and the generated Central Recirculation Zone (CRZ) are well established in the literature. Nevertheless, a more in-depth characterization is still required in this area of active research since theory and experimental data are not yet able to predict which unstable mode dominates the flow. This work aims at using Large Eddy Simulation for a complete characterisation of the unsteady flow structures generated within the combustion chamber of a gaseous methane injection immersed in a strong non-reactive swirling flow field. To do so, a spectral analysis of the flow field is performed to identify the frequency, intensity and instabilities associated to the phenomena occurring at the swirler outlet region. A coherent structure known as Precessing Vortex Core (PVC) is identified both at the inner and the outer shear layers, resulting in a periodic disturbance of the pressure and velocity fields. The pressure and velocity fluctuations predicted by the CFD code are used to compute the spectral signatures through the Sound Pressure Level (SPL) amplitude at multiple locations. This allows investigating both the complex behaviour of the PVC and its associated acoustic phenomena. The acoustic characteristics computed by the numerical model are first validated qualitatively by comparing the spectrum with available experimental data. In this way, the use of dimensionless numbers to characterise the most energetic structures is coherent with the experimental observations and the characteristics of the PVC. Then, the numerical identification of the main acoustic modes in the chamber through Dynamic Mode Decomposition (DMD) allows overcoming the Fast Fourier Transform (FFT) shortcomings and better understanding the propagation of the hydrodynamic instability perturbations. This investigation on the main non-reacting swirling flow structures inside the combustor provides a suitable background for further studies on combustion instability mechanisms.

2021 ◽  
Author(s):  
Marcos Carreres ◽  
Luis Miguel Garcia-Cuevas ◽  
Jorge Garc\xeda-T\xedscar ◽  
Mario Belmar

Author(s):  
Mehmet Kırtas¸ ◽  
Nayan Patel ◽  
Vaidyanathan Sankaran ◽  
Suresh Menon

Large-eddy simulation (LES) of a lean-direct injection (LDI) combustor is reported in this paper. The full combustor and all the six swirl vanes are resolved and both cold and reacting flow simulations are performed. Cold flow predictions with LES indicate the presence of a broad central recirculation zone due to vortex breakdown phenomenon near the dump plane and two corner recirculation zones at the top and bottom corner of the combustor. These predicted features compare well with the experimental non-reacting data. Reacting case simulated a liquid Jet-A fuel spray using a Lagrangian approach. A three-step kinetics model that included CO and NO is used for the chemistry. Comparison of mean velocity field predicted in the reacting LES with experiments shows reasonable agreement. Comparison with the non-reacting case shows that the centerline recirculation bubble is shorter but more intense in the reacting case.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Wei Cai ◽  
Yuan Li ◽  
Xingzhong Li ◽  
Chunbao Liu

Large eddy simulation (LES) with various subgrid-scale (SGS) models was introduced to numerically calculate the transient flow of the hydraulic coupling. By using LES, the study aimed to advance description ability of internal flow and performance prediction. The CFD results were verified by experimental data. For the purpose of the description of the flow field, six subgrid-scale models for LES were employed to depict the flow field; the distribution structure of flow field was legible. Moreover, the flow mechanism was analyzed using 3D vortex structures, and those showed that DSL and KET captured abundant vortex structures and provided a relatively moderate eddy viscosity in the chamber. The predicted values of the braking torque for hydraulic coupling were compared with experimental data. The comparison results were compared with several simulation models, such as SAS and RKE, and SSTKW models. Those comparison results showed that the SGS models, especially DSL and KET, were applicable to obtain the more accurate predicted results than SAS and RKE, and SSTKW models. Clearly, the predicted results of LES with DSL and KET were far more accurate than the previous studies. The performance prediction was significantly improved.


Author(s):  
Yu Zhou ◽  
Yuan Huang ◽  
Zhongqiang Mu

To study the influence of inlet turbulence on the prediction of flow structure in practical aeroengine combustor, large eddy simulation with dynamic Smagorinsky subgrid model is used to explore the complex unsteady flow field in a single burner of a typical aeroengine combustor with two-stage counter-rotating swirler. The complex geometric configuration including all film cooling holes is fully simulated without any conventional simplification in order to reduce the modeling errors. First, unsteady process that flow developing from static to statistically stationary state is fully simulated under laminar inlet condition to obtain a fundamental understanding of flow characteristics in the combustor. Afterwards, synthetic eddy method is utilized to generate a turbulent inlet condition so that a perturbation with about 5% turbulence intensity is superimposed to the inlet plane. Simulation result shows that for the laminar inflow case, flow separation occurs in the near-wall region of the diffusion section, inducing a boundary layer transition and consequently introducing turbulence with nonuniformity in space before the swirler. In contrast, synthesized inflow generated under turbulent inlet condition by synthetic eddy method is more spatially homogeneous. Time-averaged flow field inside the swirler cup reveals that turbulent inflow ultimately causes the swirling flow with higher rotating speed in central region and more uniform distribution along the circumferential direction. It also enhances the transverse jet flow from primary holes and reverse flow in the central recirculation zone, and makes streamlines corresponding to the recirculation vortices more symmetrical on central profile. Maximum recirculating velocity predicted in central recirculation zone is −27.65 m/s and −17.86 m/s in turbulent and laminar case respectively, and corresponding total pressure recovery coefficient is 96.03% and 96.81%.


Author(s):  
Lorenzo Mazzei ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Fabio Turrini

This paper reports the main findings of a numerical investigation aimed at characterizing the flow field and the wall heat transfer resulting from the interaction of a swirling flow provided by lean-burn injectors and a slot cooling system, which generates film cooling in the first part of the combustor liner. In order to overcome some well-known limitations of Reynolds-averaged Navier–Stokes (RANS) approach, e.g., the underestimation of mixing, the simulations were performed with hybrid RANS–large eddy simulation (LES) models, namely, scale-adaptive simulation (SAS)–shear stress transport (SST) and detached eddy simulation (DES)–SST, which are proving to be a viable approach to resolve the main structures of the flow field. The numerical results were compared to experimental data obtained on a nonreactive three-sector planar rig developed in the context of the EU project LEMCOTEC. The analysis of the flow field has highlighted a generally good agreement against particle image velocimetry (PIV) measurements, especially for the SAS–SST model, whereas DES–SST returns some discrepancies in the opening angle of the swirling flow, altering the location of the corner vortex. Also the assessment in terms of Nu/Nu0 distribution confirms the overall accuracy of SAS–SST, where a constant overprediction in the magnitude of the heat transfer is shown by DES–SST, even though potential improvements with mesh refinement are pointed out.


Author(s):  
Chuang Jin ◽  
Giovanni Coco ◽  
Rafael O. Tinoco ◽  
Pallav Ranjan ◽  
Jorge San Juan ◽  
...  

2020 ◽  
Vol 8 (9) ◽  
pp. 728
Author(s):  
Said Alhaddad ◽  
Lynyrd de Wit ◽  
Robert Jan Labeur ◽  
Wim Uijttewaal

Breaching flow slides result in a turbidity current running over and directly interacting with the eroding, submarine slope surface, thereby promoting further sediment erosion. The investigation and understanding of this current are crucial, as it is the main parameter influencing the failure evolution and fate of sediment during the breaching phenomenon. In contrast to previous numerical studies dealing with this specific type of turbidity currents, we present a 3D numerical model that simulates the flow structure and hydrodynamics of breaching-generated turbidity currents. The turbulent behavior in the model is captured by large eddy simulation (LES). We present a set of numerical simulations that reproduce particular, previously published experimental results. Through these simulations, we show the validity, applicability, and advantage of the proposed numerical model for the investigation of the flow characteristics. The principal characteristics of the turbidity current are reproduced well, apart from the layer thickness. We also propose a breaching erosion model and validate it using the same series of experimental data. Quite good agreement is observed between the experimental data and the computed erosion rates. The numerical results confirm that breaching-generated turbidity currents are self-accelerating and indicate that they evolve in a self-similar manner.


Author(s):  
Yigang Luan ◽  
Lianfeng Yang ◽  
Bo Wan ◽  
Tao Sun

Gas turbine engines have been widely used in modern industry especially in the aviation, marine and energy fields. The efficiency of gas turbines directly affects the economy and emissions. It’s acknowledged that the higher turbine inlet temperatures contribute to the overall gas turbine engine efficiency. Since the components are subject to the heat load, the internal cooling technology of turbine blades is of vital importance to ensure the safe and normal operation. This paper is focused on exploring the flow and heat transfer mechanism in matrix cooling channels. In order to analyze the internal flow field characteristics of this cooling configuration at a Reynolds number of 30000 accurately, large eddy simulation method is carried out. Methods of vortex identification and field synergy are employed to study its flow field. Cross-sectional views of velocity in three subchannels at different positions have been presented. The results show that the airflow is strongly disturbed by the bending part. It’s concluded that due to the bending structure, the airflow becomes complex and disordered. When the airflow goes from the inlet to the turning, some small-sized and discontinuous vortices are formed. Behind the bending structure, the size of the vortices becomes big and the vortices fill the subchannels. Because of the structure of latticework, the airflow is affected by each other. Airflow in one subchannel can exert a shear force on another airflow in the opposite subchannel. It’s the force whose direction is the same as the vortex that enhances the longitudinal vortices. And the longitudinal vortices contribute to the energy exchange of the internal airflow and the heat transfer between airflow and walls. Besides, a comparison of the CFD results and the experimental data is made to prove that the numerical simulation methods are reasonable and acceptable.


Author(s):  
Lara Schembri Puglisevich ◽  
Gary Page

Unsteady Large Eddy Simulation (LES) is carried out for the flow around a bluff body equipped with an underbody rear diffuser in close proximity to the ground, representing an automotive diffuser. The goal is to demonstrate the ability of LES to model underbody vortical flow features at experimental Reynolds numbers (1.01 × 106 based on model height and incoming velocity). The scope of the time-dependent simulations is not to improve on Reynolds-Averaged Navier Stokes (RANS), but to give further insight into vortex formation and progression, allowing better understanding of the flow, hence allowing more control. Vortical flow structures in the diffuser region, along the sides and top surface of the bluff body are successfully modelled. Differences between instantaneous and time-averaged flow structures are presented and explained. Comparisons to pressure measurements from wind tunnel experiments on an identical bluff body model shows a good level of agreement.


Sign in / Sign up

Export Citation Format

Share Document