A Flexible Fuel Semi-Closed Combined Cycle for Power, Refrigeration and Water

Author(s):  
W. E. Lear ◽  
J. F. Crittenden ◽  
J. R. Khan ◽  
S. A. Sherif

The High Pressure Regenerative Turbine Engine (HPRTE) has been investigated since the mid 1990s as the distributed energy system, among other applications, for civilian or military use. Previous literature describing its modeling and experimental demonstration have indicated several benefits, especially when combined with a Vapor Absorption Refrigeration System (VARS) in a novel way. The benefits includes increased efficiency, high part power efficiency, small lapse rate, compactness, low emissions, low air exhaust flows (which decrease filtration and ducting) and condensation of fresh water. The current paper describes the preliminary design and modeling of a modified version of this system applied to distributed energy, especially in regions which are prone to major grid interruptions due to hurricanes, under-capacity, or terrorism. In such cases, the distributed energy system should support most or all services within an isolated “island” so that the influence of the power outage is limited in scope. In addition, the paper will describe the possible production of ice, under emergency conditions, using the fresh condensate plus other water sources.

Author(s):  
ChoonJae Ryu ◽  
Aditya Srinivasan ◽  
David R. Tiffany ◽  
John F. Crittenden ◽  
William E. Lear ◽  
...  

The Power, Water Extraction, and Refrigeration (PoWER) engine has been investigated for several years as a distributed energy (DE) system among other applications for civilian or military use. Previous literature describing its modeling and experimental demonstration have indicated several benefits, especially when the underlying semi-closed cycle gas turbine is combined with a vapor absorption refrigeration system, the PoWER system described herein. The benefits include increased efficiency, high part-power efficiency, small lapse rate, compactness, low emissions, lower air and exhaust flows (which decrease filtration and duct size) and condensation of fresh water. The present paper describes the preliminary design and its modeling of a modified version of this system as applied to DE system, especially useful in regions which are prone to major grid interruptions due to hurricanes, under-capacity, or terrorism. In such cases, the DE system should support most or all services within an isolated service island, including ice production, so that the influence of the power outage is contained in magnitude and scope. The paper describes the rather straightforward system modifications necessary for ice production. However, the primary focus of the paper is on dynamic modeling of the ice making capacity to achieve significant load-leveling during the summer utility peak, hence reducing the electrical capacity requirements for the grid.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
ChoonJae Ryu ◽  
David R. Tiffany ◽  
John F. Crittenden ◽  
William E. Lear ◽  
S. A. Sherif

The power, water extraction, and refrigeration (PoWER) engine has been investigated for several years as a distributed energy (DE) system among other applications for civilian or military use. Previous literature describing its modeling and experimental demonstration have indicated several benefits, especially when the underlying semiclosed cycle gas turbine is combined with a vapor absorption refrigeration system, the PoWER system described herein. The benefits include increased efficiency, high part-power efficiency, small lapse rate, compactness, low emissions, lower air and exhaust flows (which decrease filtration and duct size), and condensation of fresh water. The present paper describes the preliminary design and its modeling of a modified version of this system as applied to DE, especially useful in regions, which are prone to major grid interruptions due to hurricanes, undercapacity, or terrorism. In such cases, the DE system should support most or all services within an isolated service island, including ice production, so that the influence of the power outage is contained in magnitude and scope. The paper describes the rather straightforward system modifications necessary for ice production. However, the primary focus of the paper is on dynamic modeling of the ice making capacity to achieve significant load-leveling via thermal energy storage during the summer utility peak, hence reducing the electrical capacity requirements for the grid.


Author(s):  
William E. Lear ◽  
ChoonJae Ryu ◽  
John F. Crittenden ◽  
Aditya Srinivasan ◽  
William Ellis ◽  
...  

The Power, Water Extraction, and Refrigeration (PoWER) engine has been investigated for several years as a distributed energy system, among other applications, for civilian or military use. Previous literature describing its modeling and experimental demonstration have indicated several benefits, especially when the underlying semi-closed cycle gas turbine is combined with a vapor absorption refrigeration system, the PoWER system described herein. The benefits include increased efficiency, high part-power efficiency, small lapse rate, compactness, less emissions, less air and exhaust flows (which decrease filtration and duct size) and condensation of fresh water. The current paper describes the preliminary design and modeling of a modified version of this system as applied to distributed energy, especially useful in regions which are prone to major grid interruptions due to hurricanes, under-capacity, or terrorism. In such cases, the distributed energy system should support most or all services within an isolated service island, including ice production, so that the influence of the power outage is limited in scope. The current paper describes the rather straightforward system modifications necessary for ice production. The primary focus of the paper is the use of this ice-making capacity to achieve significant load-leveling during the summer utility peak, hence reducing the electrical capacity requirements for the grid as well as load-leveling strategies.


Author(s):  
ChoonJae Ryu ◽  
William E. Lear ◽  
S. A. Sherif

The Power, Water Extraction, and Refrigeration (PoWER) engine has been investigated for several years as a distributed energy system, among other applications, for civilian or military use. Previous literature describing its modeling and experimental demonstration have indicated several benefits, especially when the underlying semi-closed cycle gas turbine is combined with a vapor absorption refrigeration system, the PoWER system described herein. The benefits include increased efficiency, high part-power efficiency, small lapse rate, compactness, less emission, air, and exhaust flows (which decrease filtration and duct size) and condensation of fresh water. The present paper describes the preliminary design and modeling of a modified version of this system as applied to distributed energy, especially useful in regions which are prone to major grid interruptions due to hurricanes, under - capacity, or terrorism. In such cases, the distributed energy system should support most or all services within an isolated service island, including ice production, so that the influence of the power outage is limited in scope. This paper describes the rather straightforward system modifications necessary for ice production. The primary focus of the paper is the use of this ice-making capacity to achieve significant load-leveling during the summer utility peak, hence reducing the electrical capacity requirements for the grid as well as load-leveling strategies.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 600
Author(s):  
Bin Ouyang ◽  
Lu Qu ◽  
Qiyang Liu ◽  
Baoye Tian ◽  
Zhichang Yuan ◽  
...  

Due to the coupling of different energy systems, optimization of different energy complementarities, and the realization of the highest overall energy utilization rate and environmental friendliness of the energy system, distributed energy system has become an important way to build a clean and low-carbon energy system. However, the complex topological structure of the system and too many coupling devices bring more uncertain factors to the system which the calculation of the interval power flow of distributed energy system becomes the key problem to be solved urgently. Affine power flow calculation is considered as an important solution to solve uncertain steady power flow problems. In this paper, the distributed energy system coupled with cold, heat, and electricity is taken as the research object, the influence of different uncertain factors such as photovoltaic and wind power output is comprehensively considered, and affine algorithm is adopted to calculate the system power flow of the distributed energy system under high and low load conditions. The results show that the system has larger operating space, more stable bus voltage and more flexible pipeline flow under low load condition than under high load condition. The calculation results of the interval power flow of distributed energy systems can provide theoretical basis and data support for the stability analysis and optimal operation of distributed energy systems.


Sign in / Sign up

Export Citation Format

Share Document