scholarly journals Data Quality Assurance for Supersonic Jet Noise Measurements

Author(s):  
Clifford Brown ◽  
Brenda Henderson ◽  
James Bridges

The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center’s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility’s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

2018 ◽  
Vol 144 (3) ◽  
pp. 1356-1367 ◽  
Author(s):  
Alan T. Wall ◽  
Kent L. Gee ◽  
Kevin M. Leete ◽  
Tracianne B. Neilsen ◽  
Trevor A. Stout ◽  
...  

Author(s):  
Ryuichi Okada ◽  
Toshinori Watanabe ◽  
Seiji Uzawa ◽  
Takehiro Himeno ◽  
Tsutomu Oishi

Jet noise reduction is essential for environmentally-friendly civil transport. Since jet noise becomes very intense in the case of supersonic aircraft, noise reduction is crucial topic for the realization of next-generation supersonic transport. In the present study, experimental investigations were performed to clarify the effect of microjet injection on supersonic jet noise and flow field. The experiments were focused on supersonic jet with Mach number up to 1.47, which was generated from a rectangular nozzle with high aspect ratio. Far-field acoustic measurements were conducted for widely ranged microjet conditions to understand the influence of the condition on characteristics of supersonic jet noise and flow field. For understanding the unsteady behavior of the flow field and the relation with noise reduction, flow field visualization was performed with schlieren technique using a high-speed camera.


2017 ◽  
Vol 65 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Zhe Chen ◽  
Jiu-Hui Wu ◽  
A-Dan Ren ◽  
Xin Chen ◽  
Zhen Huang

Author(s):  
Chris Nelson ◽  
Alan B. Cain ◽  
Robert P. Dougherty ◽  
Kenneth S. Brentner ◽  
Philip J. Morris

2022 ◽  
Author(s):  
Junhui Liu ◽  
Yu Yu Khine ◽  
Mohammad Saleem ◽  
Omar Lopez Rodriguez ◽  
Ephraim J. Gutmark

2021 ◽  
Author(s):  
Junhui Liu ◽  
Yu Yu Khine ◽  
Mohammad Saleem ◽  
Omar Lopez Rodriguez ◽  
Ephraim Gutmark

Author(s):  
Kailas Kailasanath ◽  
Andrew T. Corrigan ◽  
Junhui Liu ◽  
Ravi Ramamurti

Sign in / Sign up

Export Citation Format

Share Document