Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
Latest Publications


TOTAL DOCUMENTS

104
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By ASMEDC

9780791843963

Author(s):  
Adam Robinson ◽  
Carol Eastwick ◽  
Herve´ Morvan

Within an aero-engine bearing chamber oil is provided to components to lubricate and cool. This oil must be efficiently removed (scavenged) from the chamber to ensure it does not overheat and degrade. Bearing chambers typically contain a sump section with an exit pipe leading to a scavenge pump. In this paper a simplified geometry of a sump section, here simply made of a radial off-take port on a walled inclined plane, is analysed computationally. This paper follows on work presented within GT2008-50634. In the previous paper it was shown that simple gravity draining from a static head of liquid cold be modelled accurately, for what was akin to a deep sump situation fond in integrated gear boxes for example. The work within this paper will show that the draining of flow perpendicular to a moving film can be modelled. This situation is similar to the arrangements found in transmission bearing chambers. The case modelled is of a walled gravity driven film running down a plane with a circular off-take port, this replicates experimental work similar to that reported in GT2008-50632. The commercial computational fluid dynamics (CFD) code, Fluent 6 [1] has been employed for modelling, sing the Volume of Fluid (VOF) approach of Hirt and Nichols [2, 3] to capture the physics of both the film motion and the two phase flow in the scavenge pipe system. Surface tension [4] and a sharpening algorithm [5] are used to complement the representation of the free surface and associated effects. This initial CFD investigation is supported and validated with experimental work, which is only depicted briefly here as it is mainly sued to support the CFD methodology. The case has been modelled in full as well as with the use of a symmetry plane running down the centre of the plane parallel to the channel walls. This paper includes details of the meshing methodology, the boundary conditions sued, which will be shown to be of critical importance to accurate modelling, and the modelling assumptions. Finally, insight into the flow patterns observed for the cases modelled are summarised. The paper further reinforces that CFD is a promising approach to analysing bearing chamber scavenge flows although it can still be relatively costly.



Author(s):  
Heena V. Panchasara ◽  
Ajay K. Agrawal

In this study the vegetable oil (VO) is preheated to reduce the kinematic viscosity, and thus, improve atomization. A commercial air-blast atomizer is used to produce the VO spray at ambient conditions of temperature and pressure. Characteristics of the resulting spray are measured using a laser sheet visualization system and a Phase Doppler Particle Analyzer system. Experiments are conducted for VO temperatures varying from 40 C to 100 C and air to liquid mass ratio (ALR) of 2.0 and 4.0. Results show a decrease in Sauter Mean Diameter with an increase in VO temperature, regardless of the ALR. Radial profiles show larger droplets migrating towards the edge of the spray and smaller droplets in the interior spray region. Results show a significant difference in distributions of mean and root mean square axial velocity profiles as the VO inlet temperature is increased for a fixed ALR. Higher VO inlet temperature and higher ALR produced a narrower spray with smaller diameter droplets and higher peak axial velocities. Overall, this study has shown that preheating VO improves atomization by producing spray with smaller diameter droplets.



Author(s):  
John A. Violette ◽  
Eric S. Loos

The mechanical design of a new variable pitch fan system for high bypass turbofan engines is presented, offering 10–14% fuel savings for next generation turbofan engines. Comparable in weight to current fans, the new design incorporates a compact pitch change mechanism that fits within a current fan’s center body. The key to compactness is the use of multiple high strength tension/torsion straps, which support blade centrifugal loads with unique structural efficiency and redundancy, while allowing ten to fifteen degrees of blade pitch rotation. The new retention system also offers significant reduction of pitch control forces by balancing blade centrifugal twisting loads with strap restoring moments, achieving a desired pitch setting. The use of a pin root fan blade facilitates on-wing blade replacement. Fan blade incidence angles are decreased at low aircraft speeds to avoid fan stall flutter problems. Therefore, advanced engines no longer need the addition of a variable area nozzle to the exit of the fan duct to prevent flutter, saving additional weight, complexity, and cost. This new fan system offers the best solution for achieving a major improvement in turbofan engine efficiency, at the lowest weight.



Author(s):  
Konstantin von Niessen ◽  
Malko Gindrat

Plasma spray - physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland) to deposit coatings out of the vapor phase. PS-PVD is developed on the basis of the well established low pressure plasma spraying (LPPS) technology. In comparison to conventional vacuum plasma spraying (VPS) and low pressure plasma spraying (LPPS), these new process use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam - physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Due to the forced gas stream of the plasma jet, complex shaped parts like multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight to the coating source can be coated homogeneously. This paper reports on the progress made by Sulzer Metco to develop a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This includes coating properties like strain tolerance and erosion resistance but also the coverage of multiple air foils.



Author(s):  
Jianhua Yu ◽  
Huayu Zhao ◽  
Shunyan Tao ◽  
Xiaming Zhou ◽  
Chuanxian Ding

Plasma-sprayed thermal barrier coating (TBC) systems are widely used in gas turbine blades to increase turbine entry temperature (TET) and better efficiency. Yttria stabilized zirconia (YSZ) has been the conventional thermal barrier coating material because of its low thermal conductivity, relative high thermal expansion coefficient and good corrosion resistance. However the YSZ coatings can hardly fulfill the harsh requirements in future for higher reliability and the lower thermal conductivity at higher temperatures. Among the interesting TBC candidates, materials with pyrochlore structure show promising thermo-physical properties for use at temperatures exceeding 1200 °C. Sm2Zr2O7 bulk material does not only have high temperature stability, sintering resistance but also lower thermal conductivity and higher thermal expansion coefficient. The sintering characteristics of ceramic thermal barrier coatings under high temperature conditions are complex phenomena. In this paper, samarium zirconate (Sm2Zr2O7, SZ) powder and coatings were prepared by solid state reaction and atmosphere plasma spraying process, respectively. The microstructure development of coatings derived from sintering after heat-treated at 1200–1500 °C for 50 h have been investigated. The microstructure was examined by scanning electron microscopy (SEM) and the grain growth was analyzed in this paper as well.



Author(s):  
Budi Chandra ◽  
Kathy Simmons ◽  
Stephen Pickering ◽  
Marc Tittel

Aeroengines incorporate various bearing chambers that house the shaft bearings and the oil used to cool and lubricate these bearings must subsequently be recovered from these chambers. Effective oil removal (scavenge) is essential to avoid heat generation through unnecessary working of the oil which can lead to excessive heat generation and reduced overall efficiency. Therefore the design of the scavenge region (sump) in a bearing chamber, as well as the ability to assess its performance is very important. An ongoing research program into bearing chamber scavenge comprising experimental and computational components is being conducted at the University of Nottingham Technology Centre in Gas Turbine Transmission Systems. This program is enhancing understanding of sump performance and design. In this paper an experimental study into a simplified but representative scavenge is reported. This experimental work helps to further understanding of the complex two-phase flow physics in a bearing chamber, particularly in the scavenge region, by means of various measurements and flow visualization. For the study a bespoke test rig has been built. It consists of a simplified, generic bearing chamber with simple sump geometry constructed entirely of Perspex to allow visualization. A shaft in the centre of the chamber capable of rotating up to 15,000 rpm is employed to introduce a windage flow in the chamber. Water (the working fluid) is fed to the chamber via an inlet pump and an outlet pump removes liquid from the chamber, closing the circuit. Several pneumatic pinch valves are installed in the flow circuit to allow residence volume measurement. A completely air-tight reservoir with internal baffle functions as a simple liquid-gas separator, allowing measurement of gas volumetric flow rate in the off-take pipe; hence the scavenge ratio (ratio of total exit volume to liquid volume) can be obtained. Residence volume measurements highlight the importance of sump geometry as an ill-designed sump can lead to an undesirable increase in residence volume.



Author(s):  
Claudia Rinaldi ◽  
Letizia de Maria ◽  
Ada del Corno

The very scattered life times of thermal barrier coatings used on the first stage rotating blades of GTs used in power generation plants encourage the development of reliable non destructive techniques to reliably detect degradation before spalling. Among the optical non contact techniques Photo stimulated Luminescence PiezoSpectroscopy (PLPS) is promising as it lets to measure the residual compressive stress values of the thermally grown oxide (σTGO) at the interface between the BC and the ceramic top coat of EB-PVD thermal barriers. This paper underlines the potentiality of the photoluminescence piezospectroscopy as a diagnostic tool to assess the actual local film cooling efficiency on ex service blades with EB-PD TBCs. TGO stress values measured by PLPS (well related to the local degradation level of the interface, as observed on metallographic sections) result to be correlated with holes positions at all the different height of the blade examined. Moreover the reliability of the NDT evaluation is shown to increase significantly with an automatic PLPS instrumentation able to map σTGO in the regions of interest. The recorded large number of σTGO values suitably elaborated give a statistically significant evaluation of the degradation level reached by the TBC/BC interface, before spallation. A quantitative relationship between spent life fraction and σTGO formulated in the literature is here extended to ex-serviced blades to quantify the NDT result in terms of spent life fraction. These results are discussed in the light of T and spent life fraction estimates made with a simplified life model of TBC coatings.



Author(s):  
Abraham Engeda

This paper shows the power of spreadsheets as a strong tool in engineering teaching and research labs. In applied thermo-fluid education, even the one dimensional design or simple experimental measurement and analysis becomes a very complex exercise unless the procedure is programmed. Due to lengthy calculations and iterations, simple solutions are not possible. Exercises have therefore been limited in the classroom. But recent advances in powerful spreadsheets have opened a simple and fast way of performing design and advanced measurements. In recent times due to the introduction of a variety of mathematical soft wares, students have been relived from unnecessary time consuming chores; and therefore, complex measurements can now be carried out more comprehensively and easily. This paper reports on an experimental investigation to determine the effect of the vaneless diffuser width on the unsteady flow performance of a centrifugal compressor stage, where the whole data processing was carried out using a spreadsheet both for the steady and unsteady characteristics. Two compressor configurations with different vaneless diffuser width were investigated at four different impeller speeds and compared in the frequency and time domain. Only one diffuser rotating stall but different types of impeller rotating stalls were detected. The experiments show that the diffuser has a strong influence on the flow in the impeller including in areas way upstream. Analysis of the results indicated: • With increasing diffuser width the onset of impeller rotating stall was shifted to lower flow rates. • With increasing diffuser width the frequencies of the rotating stalls decreased. • There is a common tendency in most of the experiments to lower numbers of rotating cells with increasing relative speed. The whole data acquisition, processing and presentation are carried out using Excel.



Author(s):  
Matthias Hiddeman ◽  
Peter Marx

The GT26 gas turbine provides an additional degree of flexibility as the engine operates at high efficiencies from part load to full load while still maintaining low NOx emissions. The sequential combustion, with the EV burner as the basis for this flexibility also extends to the ability to handle wide fluctuations in fuel gas compositions. Increased mass flow was the main driver for the latest GT26 upgrade, resulting in substantial performance improvements. In order to ensure high levels of reliability and availability Alstom followed their philosophy of evolutionary steps to continuously develop their gas turbines. A total of 47 engines of this upgrade of the GT26 gas turbine have been ordered worldwide to date (Status: January 2010) enhancing the business case of power generators by delivering superior operational and fuel flexibility and combined cycle efficiencies up to and beyond 59%.



Author(s):  
Carlo Carcasci ◽  
Riccardo Da Soghe ◽  
Andrea Silingardi ◽  
Pio Astrua ◽  
Stefano Traverso

The correct simulation of power plant behavior over a variety of operating conditions has to be extremely detailed in order to provide reliable help to the turbomachinery developers. The latter instance implies for designers and commercial personnel to be equipped with reliable calculation tools (in-house developed or commercial). In particular, Performance Analysis Codes (PACs) allow the designers to analyze different system configurations. To predict off-design behavior, these codes need to be not limited to thermodynamic analysis, but also able to perform a simplified description of each component that require a specific set of correlations. The selection of suitable correlation sets for compressor IGV airfoils could be very difficult. This paper deal with a procedure based on 2D-CFD analysis to provide a reliable evaluation of compressor IGV airfoils deviation and profile loss coefficients in a wide range of operating condition. The analysis were set up on the IGV of the Ansaldo Energia AE94.3A compressor and the developed correlations were successfully implemented in an in-house PAC called ESMS.



Sign in / Sign up

Export Citation Format

Share Document