Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique

Author(s):  
Diganta P. Narzary ◽  
Kuo-Chun Liu ◽  
Akhilesh P. Rallabandi ◽  
Je-Chin Han

Adiabatic film-cooling effectiveness is examined on a high pressure turbine blade by varying three critical engine parameters, viz., coolant blowing ratio, coolant-to-mainstream density ratio and freestream turbulence intensity. Three average coolant blowing ratios (BR = 1.2, 1.7, and 2.2 on the pressure side and BR = 1.1, 1.4, and 1.8 on the suction side), three average coolant density ratios (DR = 1.0, 1.5, and 2.5), and two average freestream turbulence intensities (Tu = 4.2% and 10.5%) are considered. Conduction-free Pressure Sensitive Paint (PSP) technique is adopted to measure film-cooling effectiveness. Three foreign gases— N2 for low density, CO2 for medium density, and a mixture of SF6 and Argon for high density are selected to study the effect of coolant density. The test blade features 2 rows of cylindrical film-cooling holes on the suction side (45° compound), 4 rows on the pressure side (45° compound) and 3 around the leading edge (30° radial). The inlet and the exit Mach numbers are 0.24 and 0.44, respectively. Reynolds number of the mainstream flow is 7.5E105 based on the exit velocity and blade chord length. Results suggest that the PSP is a powerful technique capable of producing clear and detailed film effectiveness contours with diverse foreign gases. Large improvement on the pressure side and moderate improvement on the suction side effectiveness is witnessed when blowing ratio is raised from 1.2 to 1.7 and 1.1 to 1.4, respectively. No major improvement is seen thereafter with the downstream half of the suction side showing drop in effectiveness. The effect of increasing coolant density is to increase effectiveness everywhere on the pressure surface and suction surface except for the small region on the suction side, xss/Cx<0.2. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of the suction side where significant improvement in effectiveness is seen.

2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Diganta P. Narzary ◽  
Kuo-Chun Liu ◽  
Akhilesh P. Rallabandi ◽  
Je-Chin Han

Adiabatic film-cooling effectiveness is examined on a high-pressure turbine blade by varying three critical engine parameters, viz., coolant blowing ratio, coolant-to-mainstream density ratio, and freestream turbulence intensity. Three average coolant blowing ratios (BR=1.2, 1.7, and 2.2 on the pressure side and BR=1.1, 1.4, and 1.8 on the suction side), three average coolant density ratios (DR=1.0, 1.5, and 2.5), and two average freestream turbulence intensities (Tu=4.2% and 10.5%) are considered. Conduction-free pressure sensitive paint (PSP) technique is adopted to measure film-cooling effectiveness. Three foreign gases—N2 for low density, CO2 for medium density, and a mixture of SF6 and argon for high density are selected to study the effect of coolant density. The test blade features two rows of cylindrical film-cooling holes on the suction side (45 deg compound), 4 rows on the pressure side (45 deg compound) and 3 around the leading edge (30 deg radial). The inlet and the exit Mach numbers are 0.24 and 0.44, respectively. The Reynolds number of the mainstream flow is 7.5×105 based on the exit velocity and blade chord length. Results suggest that the PSP is a powerful technique capable of producing clear and detailed film-effectiveness contours with diverse foreign gases. Large improvement on the pressure side and moderate improvement on the suction side effectiveness is witnessed when blowing ratio is raised from 1.2 to 1.7 and 1.1 to 1.4, respectively. No major improvement is seen thereafter with the downstream half of the suction side showing drop in effectiveness. The effect of increasing coolant density is to increase effectiveness everywhere on the pressure surface and suction surface except for the small region on the suction side, xss/Cx<0.2. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of the suction side where significant improvement in effectiveness is seen.


2021 ◽  
Author(s):  
Izhar Ullah ◽  
Sulaiman M. Alsaleem ◽  
Lesley M. Wright ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This work is an experimental study of film cooling effectiveness on a blade tip in a stationary, linear cascade. The cascade is mounted in a blowdown facility with controlled inlet and exit Mach numbers of 0.29 and 0.75, respectively. The free stream turbulence intensity is measured to be 13.5 % upstream of the blade’s leading edge. A flat tip design is studied, having a tip gap of 1.6%. The blade tip is designed to have 15 shaped film cooling holes along the near-tip pressure side (PS) surface. Fifteen vertical film cooling holes are placed on the tip near the pressure side. The cooling holes are divided into a 2-zone plenum to locally maintain the desired blowing ratios based on the external pressure field. Two coolant injection scenarios are considered by injecting coolant through the tip holes only and both tip and PS surface holes together. The blowing ratio (M) and density ratio (DR) effects are studied by testing at blowing ratios of 0.5, 1.0, and 1.5 and three density ratios of 1.0, 1.5, and 2.0. Three different foreign gases are used to create density ratio effect. Over-tip flow leakage is also studied by measuring the static pressure distributions on the blade tip using the pressure sensitive paint (PSP) measurement technique. In addition, detailed film cooling effectiveness is acquired to quantify the parametric effect of blowing ratio and density ratio on a plane tip design. Increasing the blowing ratio and density ratio resulted in increased film cooling effectiveness at all injection scenarios. Injecting coolant on the PS and the tip surface also resulted in reduced leakage over the tip. The conclusions from this study will provide the gas turbine designer with additional insight on controlling different parameters and strategically placing the holes during the design process.


Author(s):  
Izhar Ullah ◽  
Sulaiman Alsaleem ◽  
Lesley Wright ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This work is an experimental study of film cooling effectiveness on a blade tip in a stationary, linear cascade. The cascade is mounted in a blowdown facility with controlled inlet and exit Mach numbers of 0.29 and 0.75, respectively. The free stream turbulence intensity is measured to be 13.5 % upstream of the blade's leading edge. A flat tip design is studied, having a tip gap of 1.6%. The blade tip is designed to have 15 shaped film cooling holes along the near-tip pressure side (PS) surface. Fifteen vertical film cooling holes are placed on the tip near the pressure side. The cooling holes are divided into a 2-zone plenum to locally maintain the desired blowing ratios based on the external pressure field. Two coolant injection scenarios are considered by injecting coolant through the tip holes only and both tip and PS surface holes together. The blowing ratio (M) and density ratio (DR) effects are studied by testing at blowing ratios of 0.5, 1.0, and 1.5 and three density ratios of 1.0, 1.5, and 2.0. Three different foreign gases are used to create density ratio effect. Over-tip flow leakage is also studied by measuring the static pressure distributions on the blade tip using the pressure sensitive paint measurement technique. In addition, detailed film cooling effectiveness and over-tip flow leakage is acquired to quantify the parametric effect of blowing ratio and density ratio on a plane tip.


2005 ◽  
Vol 127 (5) ◽  
pp. 521-530 ◽  
Author(s):  
Jaeyong Ahn ◽  
Shantanu Mhetras ◽  
Je-Chin Han

Effects of the presence of squealer, the locations of the film-cooling holes, and the tip-gap clearance on the film-cooling effectiveness were studied and compared to those for a plane (flat) tip. The film-cooling effectiveness distributions were measured on the blade tip using the pressure-sensitive paint technique. Air and nitrogen gas were used as the film-cooling gases, and the oxygen concentration distribution for each case was measured. The film-cooling effectiveness information was obtained from the difference of the oxygen concentration between air and nitrogen gas cases by applying the mass transfer analogy. Plane tip and squealer tip blades were used while the film-cooling holes were located (a) along the camber line on the tip or (b) along the tip of the pressure side. The average blowing ratio of the cooling gas was 0.5, 1.0, and 2.0. Tests were conducted with a stationary, five-bladed linear cascade in a blow-down facility. The free-stream Reynolds number, based on the axial chord length and the exit velocity, was 1,138,000, and the inlet and the exit Mach numbers were 0.25 and 0.6, respectively. Turbulence intensity level at the cascade inlet was 9.7%. All measurements were made at three different tip-gap clearances of 1%, 1.5%, and 2.5% of blade span. Results show that the locations of the film-cooling holes and the presence of squealer have significant effects on surface static pressure and film-cooling effectiveness, with film-cooling effectiveness increasing with increasing blowing ratio.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Shiou-Jiuan Li ◽  
Je-Chin Han

The effect of an unsteady stator wake (simulated by wake rods mounted on a spoke-wheel wake generator) on the modeled rotor blade is studied using the pressure sensitive paint (PSP) mass-transfer analogy method. Emphasis of the current study is on the midspan region of the blade. The flow is in the low Mach number (incompressible) regime. The suction (convex) side has simple angled cylindrical film-cooling holes; the pressure (concave) side has compound angled cylindrical film-cooling holes. The blade also has radial shower-head leading edge film-cooling holes. Strouhal numbers studied range from 0 to 0.36; the exit Reynolds number based on the axial chord is 530,000. Blowing ratios range from 0.5 to 2.0 on the suction side and 0.5 to 4.0 on the pressure side. Density ratios studied range from 1.0 to 2.5, to simulate actual engine conditions. The convex suction surface experiences film-cooling jet lift-off at higher blowing ratios, resulting in low effectiveness values. The film coolant is found to reattach downstream on the concave pressure surface, increasing effectiveness at higher blowing ratios. Results show deterioration in film-cooling effectiveness due to increased local turbulence caused by the unsteady wake, especially on the suction side. Results also show a monotonic increase in film-cooling effectiveness on increasing the coolant to mainstream density ratio.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Zhihong Gao ◽  
Diganta P. Narzary ◽  
Je-Chin Han

The film-cooling effectiveness on the surface of a high pressure turbine blade is measured using the pressure sensitive paint technique. Compound angle laidback fan-shaped holes are used to cool the blade surface with four rows on the pressure side and two rows on the suction side. The coolant injects to one side of the blade, either pressure side or suction side. The presence of wake due to the upstream vanes is simulated by placing a periodic set of rods upstream of the test blade. The wake rods can be clocked by changing their stationary positions to simulate progressing wakes. The effect of wakes is recorded at four phase locations along the pitchwise direction. The freestream Reynolds number, based on the axial chord length and the exit velocity, is 750,000. The inlet and exit Mach numbers are 0.27 and 0.44, respectively, resulting in a pressure ratio of 1.14. Five average blowing ratios ranging from 0.4 to 1.5 are tested. Results reveal that the tip-leakage vortices and endwall vortices sweep the coolant on the suction side to the midspan region. The compound angle laidback fan-shaped holes produce a good film coverage on the suction side except for the regions affected by the secondary vortices. Due to the concave surface, the coolant trace is short and the effectiveness level is low on the pressure surface. However, the pressure side acquires a relatively uniform film coverage with the multiple rows of cooling holes. The film-cooling effectiveness increases with the increasing average blowing ratio for either side of coolant ejection. The presence of stationary upstream wake results in lower film-cooling effectiveness on the blade surface. The compound angle shaped holes outperform the compound angle cylindrical holes by the elevated film-cooling effectiveness, particularly at higher blowing ratios.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Nian Wang ◽  
Mingjie Zhang ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

This study investigates the effects of blowing ratio, density ratio, and spanwise pitch on the flat plate film cooling from two rows of compound angled cylindrical holes. Two arrangements of two-row compound angled cylindrical holes are tested: (a) the first row and the second row are oriented in staggered and same compound angled direction (β = +45 deg for the first row and +45 deg for the second row); (b) the first row and the second row are oriented in inline and opposite direction (β = +45 deg for the first row and −45 deg for the second row). The cooling hole is 4 mm in diameter with an inclined angle of 30 deg. The streamwise row-to-row spacing is fixed at 3d, and the spanwise hole-to-hole (p) is varying from 4d, 6d to 8d for both designs. The film cooling effectiveness measurements were performed in a low-speed wind tunnel in which the turbulence intensity is kept at 6%. There are 36 cases for each design including four blowing ratios (M = 0.5, 1.0, 1.5, and 2.0), three density ratios (DR = 1.0, 1.5, and 2.0), and three hole-to-hole spacing (p/d = 4, 6, and 8). The detailed film cooling effectiveness distributions were obtained by using the steady-state pressure-sensitive paint (PSP) technique. The spanwise-averaged cooling effectiveness are compared over the range of flow parameters. Some interesting observations are discovered including blowing ratio effect strongly depending on geometric design; staggered arrangement of the hole with same orientation does not yield better effectiveness at higher blowing ratio. Currently, film cooling effectiveness correlation of two-row compound angled cylindrical holes is not available, so this study developed the correlations for the inline arrangement of holes with opposing angles and the staggered arrangement of holes with same angles. The results and correlations are expected to provide useful information for the two-row flat plate film cooling analysis.


Author(s):  
Gladys C. Ngetich ◽  
Peter T. Ireland ◽  
Eduardo Romero

Abstract A detailed analysis of film cooling performance on a double-walled effusion-cooled blade is essential for both the coolant consumption optimization and assessment of the film to offer the desired levels of the turbine blade protection. Yet there are hardly any film effectiveness studies on double-wall full-coverage film cooled turbine blades. This paper presents a detailed film cooling effectiveness study over the full surface of a double-walled effusion-cooled high-pressure turbine rotor blade using Pressure Sensitive Paint (PSP). PSP permitted a non-intrusive and conduction-errors-free means of obtaining clean and distinct local distribution of film effectiveness on the blade surface making it possible to extract valuable film cooling effectiveness performance data on the whole blade surface. Three large-scale circular pedestal double-wall blade designs with varying pedestal height, pedestal diameter and cooling hole diameter were tested in a high-speed stationary single-blade linear cascade running at engine-representative Mach and Reynolds numbers. All the blades were tested within a range of representative modern engine coolant mass flow, ṁc to mainstream, ṁg ratios; 1.6% < ṁc/ṁ∞ < 5.5%. High porosity blade exhibited a better flow distribution and was found to consistently perform the best.


2014 ◽  
Vol 521 ◽  
pp. 104-107
Author(s):  
Ling Zhang ◽  
Quan Heng Jin ◽  
Da Fei Guo

The Realizable k-ε turbulence model was performed to investigate the film cooling effectiveness with different blowing ratio 1,1.5,2 and different density ratio 1,1.5,2.The results show that, cooling effectiveness increases with the augment of blowing ratio. On the pressure side, cooling effectiveness increases with the augment of density ratio. On the suction side, with higher density ratio the leading edge cooling increases, the middle section reduces, and the trailing edge cooling effectiveness increases first decreases.


Author(s):  
Yi Lu ◽  
Yinyi Hong ◽  
Zhirong Lin ◽  
Xin Yuan

Detailed film cooling effectiveness distributions were experimentally obtained on a turbine vane platform within a linear cascade. Testing was done in a large scale five-vane cascade with low freestream Renolds number condition 634,000 based on the axial chord length and the exit velocity. The detailed film-cooling effectiveness distributions on the platform were obtained using pressure sensitive paint technique. Two film-cooling hole configurations, cylindrical and fan-shaped, were used to cool the vane surface with two rows on pressure side, two rows on suction side and three rows on leading edge. For cylindrical holes, the blowing ratio of the coolant through the discrete cooling holes on pressure side and suction side ranged from 0.3 to 1.5 (based on the inlet mainstream velocity) while the blowing ratio ranging from 0.15 to 1.5 on leading edge; for fan-shaped holes, the four blowing ratios were 0.5, 1.0, 1.5 and 2.0. Results showed that average film-cooling effectiveness decreased with increasing blowing rate for the cylindrical holes, while the fan-shaped passage showed increased film-cooling effectiveness with increasing blowing ratio, indicating the fan-shaped cooling holes helped to improve film-cooling effectiveness by reducing overall jet liftoff. Fan-shaped holes improved average film-cooling effectiveness by 93.2%, 287.6% and 489.6% on pressure side, −4.1%, 27.9% and 78.2% on suction side over cylindrical holes at the blowing ratio of 0.5, 1.0 and 1.5 respectively. Numerical results were used to analyze the details of the flow and heat transfer on the cooling area with two turbulence models. Results demonstrated that tendency of the film cooling effectiveness distribution of numerical calculation and experimental measurement was generally consistent at different blowing ratio.


Sign in / Sign up

Export Citation Format

Share Document