stator blade
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 9 (12) ◽  
pp. 1406
Author(s):  
Han Li ◽  
Qiaogao Huang ◽  
Guang Pan ◽  
Xinguo Dong ◽  
Fuzheng Li

Reducing the noise of the underwater propulsor is gaining more and more attention in the marine industry. The pump-jet propulsor (PJP) is an extraordinary innovation in marine propulsion applications. This paper inspects the effects of blade number on a pre-swirl stator pump-jet propulsor (PJP) quantitatively and qualitatively. The numerical calculations are conducted by IDDES and ELES, where the ELES is only adopted to capture the vortical structures after refining the mesh. The numerical results show good agreement with the experiment. Detailed discussions of the propulsion, the features of thrust fluctuation in time and frequency domains, and the flow field are involved. Based on the ELES results, the vortices in the PJP flow field and the interactions between the vortices of the stator, rotor, and duct are presented. Results suggest that, though changing the blade number under a constant solidity does not affect the propulsion, it has considerable effects on the thrust fluctuation of PJP. The wakes of the stator and rotor are also notably changed. Increasing the stator blade numbers has significantly weakened the high-intensity vortices in the stator wake and, hence, the interaction with the rotor wake vortices. The hub vortices highly depend upon the wake vortices of the rotor. The hub vortices are considerably broken by upstream wake vortices when the load per rotor blade is high. In summary, the blade number is also vital for the further PJP design, particularly when the main concerns are exciting force and noise performance.


Brodogradnja ◽  
2021 ◽  
Vol 72 (4) ◽  
pp. 103-119
Author(s):  
Jin Gu Kang ◽  
Moon Chan Kim ◽  
I Rok Shin ◽  
Woo Seok Jin

The use of energy-saving devices is the most effective method for decreasing CO2 emissions, which is an increasingly concerning environmental issue. The asymmetric pre-swirl stator has been developed as an energy-saving device and has been successfully applied to various types of vessels. In the present study, a flexible material was applied to an asymmetric pre-swirl stator to determine the variation in the flow around stator and its efficiency. A fluid–structure interaction (FSI) analysis system was developed using the Star-CCM+ (fluid) and the Abaqus (structure). The proposed analysis system was validated by comparing the experimental results using a flexible plate in a flowing fluid. The flexible stator was applied to a 3,600 TEU KRISO Container Ship to determine the improvement in its performance compared to the previous optimum value achieved with a rigid stator. Although this application was conducted on a model scale and the deformation was small, the results of the flexible stator indicated the possibility of not only increasing the efficiency but also decreasing the vortex risk around stator blade.


2021 ◽  
Vol 263 (6) ◽  
pp. 112-122
Author(s):  
Shuaikang Shi ◽  
Huang Xiuchang ◽  
Rao zhiqiang ◽  
Hua hongxing

To clarify the characteristics of unsteady force spectrum of a pump-jet running under inflow turbulent,the turbulence grid and Fourier synthesis method is employed to produce incoming turbulence with spatial flow structure and temporal fluctuation, which is combined with LES (large eddy simulation) to obtain broadband unsteady force spectrum of the pump-jet. The results show that the proposed method could obtain the unsteady force broadband spectrum for duct, stator and rotor. The unsteady force broadband spectrum of the pump-jet is composed of the "hump" around the blade passing frequency and its multiples, the characteristic line spectrum at the stator blade passing frequency and shaft frequency of adjacent stator multiples. With the number of blades increasing, the "hump" becomes more obvious, the characteristic peak changes periodically and reaches the minimum when the number of blades is the number of rotors. Due to the use of the stator and duct, the amplitude of the unsteady force broadband spectrum of the pump-jet is higher than propeller, but the "hump" is not as obvious as propeller. The research is helpful to clarify the unsteady force characteristics of pump-jet induced by turbulence, and provide ideas for the vibration and noise reduction of pump-jet.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110304
Author(s):  
Hai-Ou Sun ◽  
Li-Song Wang ◽  
Zhong-Yi Wang ◽  
Meng Wang ◽  
Yan-Hua Wang ◽  
...  

This paper focuses on the numerical simulation of the flow status in the compressor with the condition of fouling. NASA stage 35 was considered as the object, and the commercial code ANSYS CFX was used. The deposition rate of contaminants on the surface was considered to be different along the height of the blade. A data from related study shows that the deposition rate of the contaminant on the side close to the hub is higher than the side near the shroud part. Based on the deposition law, this paper simulated the fouling of the compressor blades by changing the thickness on the blade surface. This subject only changed the thickness of the stator blade surface because of a data showing that the fouling on the stator blade surface is almost double that on the rotor blade surface. In the condition that the roughness value of the blade surface is constant, only the stable working range of the compressor is effected by the change of the surface thickness of the stator blade. There is a positive relationship between the value of compressor minimum flow rate and the value of thickness increment. After fouling the total pressure ratio and isentropic efficiency degenerated 1.59% and 3.76%, respectively.


2021 ◽  
Author(s):  
Mathieu Herran ◽  
Marc Dijoud ◽  
Christophe Colette

Abstract Robustness of gas turbine, turbojet or turboprop components with respect to vibratory stress is a guarantee of the success of developments made on time and in service reliability objectives achievement. Currently, it is proposed to achieve the required robustness by components geometry optimization to reduce their mechanical stress levels. It may also be possible to improve the endurance limits of the materials. These optimizations and choices, consumers in time and complexity of manufacture, may be necessary when the required robustness is not found to be achieved during the engine verification. By taking the effects of potential uncertainties and dispersions into account earlier in the development process, technological choices may be more likely to achieve the desired robustness requirement. This paper investigates several simple technological choices to control and reduce the vibratory levels present on the rotors of helicopter turboshaft engines. These technological choices are major choices in the engine architecture with or without additional parts to increase mechanical resistance margins. Gas turbine architecture has a direct impact on the level of excitations and vibratory appropriations, particularly the choice of rotor-stator blade numbers or technologies and shapes of links between rotors. Additional parts allow to increase the vibratory margins on the scale of the component. In this category, the benefit of dampers and intentional mistuning will be recalled. Particular attention will be paid to the relative weight between these technological choices in comparison with the mistuning effect on dynamic levels. Technological choices will be quantified and illustrated by mechanical and statistical analysis and experimental industrial examples.


AIAA Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Thomas Bach ◽  
Maxime Huet ◽  
Rob Watson ◽  
Stephen Spence ◽  
Yasser Mahmoudi

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2604
Author(s):  
Grzegorz Peczkis ◽  
Piotr Wiśniewski ◽  
Andriy Zahorulko

This paper demonstrates the procedure of blade adjustment in a Kaplan-type water turbine, based on calculations of the flow system. The geometrical adjustment of a twisted blade with varying chord length is described in the study. Computational fluid dynamics (CFD) analysis was used to characterise aerofoil and turbine performance. Furthermore, two turbines, with a different number of blades, were designed, manufactured, and tested experimentally. The numerical model results were then compared with the experimental data. The studies were carried out with different rotational velocities and different stator blade incidence angles. The paper shows a comparison of the turbine efficiencies that were assessed, using numerical and experimental methods, of a flow system with four- and five-bladed rotors. The numerical model results matched up well with those of the experimental study. The efficiency of the proposed turbines reached up to 72% and 84% for four-bladed and five-bladed designs, respectively. These efficiencies, when considered with the turbine’s simplicity, low production and maintenance costs, as well as their potential for harvesting energy from low energy flows, mean that Kaplan turbines provide a promising technology for processing renewable energy.


Author(s):  
Botao Zhang ◽  
Bo Liu ◽  
Xiaochen Mao ◽  
Hejian Wang

To investigate the effect of hub clearance of cantilever stator on the aerodynamic performance and the flow field of the transonic axial-flow compressor, the performance of single-stage compressors with the shrouded stator and cantilever stator was studied numerically. It is found that the hub corner separation on the stator blade suction surface (SS) was modified by introducing the hub leakage flow. The separation vortex on the SS of the stator blade root at about 10% axial chord length caused by the interaction of the shock wave and boundary layer was also controlled. Compared with the tip clearance size of the rotor blade, the stator hub clearance size (HCS) has a much less effect on the overall aerodynamic performance of the compressor, and there is no obvious effect on the flow field in the upstream blade row. With the increase of HCS, the leakage loss and the blockage degree in the flow field near the stator hub are increased and further make the adiabatic efficiency and the total pressure ratio of the compressor gradually decrease. Meanwhile, the stall margin of the compressor was changed slightly, but the response of the stall margin to the change of the HCS is nonlinear and insensitive. The stator hub leakage flow (HLF) can not only change the flow field near the hub but also redistribute the flow law within the range of the entire blade span. It will contribute to further understand the mechanism of the HLF and provide supports for the design of the cantilever stator of transonic compressors.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Rongfei Yang ◽  
Guoliang Wang ◽  
Haixu Liu ◽  
Honghui Xiang ◽  
Jie Gao

In the performance test of a compressor, the overstrain alarm of a rotor blade occurred and it was thought to be caused by a large-sized inlet probe. To explain and further avoid the occurrence of this phenomenon, the influences of probe strut configuration on the vibration strain of the compressor rotor blade and the corresponding flow mechanism are studied by using a one-way fluid-structure coupling calculation method. Firstly, the probe strut is simplified as a cylinder with a diameter of 10 mm and located upstream of the inlet stator with the strut wake impinging on the stator blade according to the compressor test. Then, the three scenarios are considered: moving the strut away from the stator blade in axial direction, shifting the strut half of the stator pitch circumferentially, and reducing the strut diameter. The analysis results show that the characteristics of blade vibration are determined by the excitation force on the rotor blade. Under the interaction between the large-sized strut and the compressor, in addition to the excitation force with the strut passing frequency, a force with a lower frequency, namely, the strut-wake-induced frequency, is also observed. The amplitude of the excitation force on the rotor blade depends on the probe configuration. When one of the excitation force frequencies is close to a natural frequency of the rotor blade, the blade resonates, and the amplitude of blade strain varies with the amplitude of the excitation force. In order to reduce the adverse effect of upstream strut wake on the compressor rotor blade vibration, the inlet probe strut should be designed with a smaller diameter and be placed further upstream of the stator in such a way that the strut wake vortex passes through the midpassage of the following stator.


Sign in / Sign up

Export Citation Format

Share Document