LES Loss Prediction in an Axial Compressor Cascade at Off-Design Incidences With Free Stream Disturbances

Author(s):  
John Leggett ◽  
Stephan Priebe ◽  
Aamir Shabbir ◽  
Richard Sandberg ◽  
Edward Richardson ◽  
...  

It is well known that an axial compressor cascade will exhibit variation in loss coefficient, described as a loss bucket, when run over a sweep of incidences, and that higher levels of free stream turbulence are likely to suppress separation bubbles and cause earlier transition (see e.g. [23]). However, it remains difficult to achieve accurate quantitative prediction of these changes using numerical simulation, particularly at off-design conditions, without the added computational expense of using eddy-resolving techniques. The aim of the present study is to investigate profile losses in an axial compressor under such conditions using wall-resolved Large Eddy Simulation (LES) and RANS. The work extends on previous work by Leggett et al.[11] with the intention of furthering our understanding of loss prediction tools and improving our quantification of the physical processes involved in loss generation. The results show that while RANS predicts losses with good accuracy the breakdown of these losses are attributed to different processes, meaning that optimisation of a compressor cascade profile, based solely on RANS, may be hard to achieve.

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
John Leggett ◽  
Stephan Priebe ◽  
Aamir Shabbir ◽  
Vittorio Michelassi ◽  
Richard Sandberg ◽  
...  

Axial compressors may be operated under off-design incidences due to variable operating conditions. Therefore, a successful design requires accurate performance and stability limits predictions under a wide operating range. Designers generally rely both on correlations and on Reynolds-averaged Navier–Stokes (RANS), the accuracy of the latter often being questioned. The present study investigates profile losses in an axial compressor linear cascade using both RANS and wall-resolved large eddy simulation (LES), and compares with measurements. The analysis concentrates on “loss buckets,” local separation bubbles and boundary layer transition with high levels of free stream turbulence, as encountered in real compressor environment without and with periodic incoming wakes. The work extends the previous research with the intention of furthering our understanding of prediction tools and improving our quantification of the physical processes involved in loss generation. The results show that while RANS predicts overall profile losses with good accuracy, the relative importance of the different loss mechanisms does not match with LES, especially at off-design conditions. This implies that a RANS-based optimization of a compressor profile under a wide incidence range may require a thorough LES verification at off-design incidence.


Author(s):  
John Leggett ◽  
Stephan Priebe ◽  
Richard Sandberg ◽  
Vittorio Michelassi ◽  
Aamir Shabbir

In the design of modern jet engines the need for accurate loss prediction techniques is ever present. The most common tool currently in use is Reynolds Averaged Navier-Stokes model which provides good estimation at design conditions but can struggle with off design conditions. With accuracy being such an important requirement, an alternative method such as Large Eddy Simulation presents an opportunity to improve and assess the off design performance. Although still limited by computational resources, the use of Large Eddy Simulations in conjunction with more detailed loss analysis methods forms a powerful tool for assessing and improving current Reynolds Averaged Navier-Stokes techniques. The simulations performed here are an incidence sweep at off-design conditions with free stream turbulence. The results of the two methodologies are compared with the use of loss breakdown analysis and the best practice of applying the loss breakdown technique to compressors is outlined.


2006 ◽  
Vol 129 (2) ◽  
pp. 311-317 ◽  
Author(s):  
Sylvain Lardeau ◽  
Ning Li ◽  
Michael A. Leschziner

Large-eddy simulations of transitional flows over a flat plate have been performed for different sets of free-stream-turbulence conditions. Interest focuses, in particular, on the unsteady processes in the boundary layer before transition occurs and as it evolves, the practical context being the flow over low-pressure turbine blades. These considerations are motivated by the wish to study the realism of a RANS-type model designed to return the laminar fluctuation energy observed well upstream of the location at which transition sets in. The assumptions underlying the model are discussed in the light of turbulence-energy budgets deduced from the simulations. It is shown that the pretransitional field is characterized by elongated streaky structures which, notwithstanding their very different structural properties relative to fully established turbulence, lead to the amplification of fluctuations by conventional shear-stress/shear-strain interaction, rather than by pressure diffusion, the latter being the process underpinning the RANS-type transitional model being investigated.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Hosein Foroutan ◽  
Savas Yavuzkurt

This paper investigates the flow field and thermal characteristics in the near-field region of film cooling jets through numerical simulations using Reynolds-averaged Navier–Stokes (RANS) and hybrid unsteady RANS (URANS)/large eddy simulation (LES) models. Detailed simulations of flow and thermal fields of a single-row of film cooling cylindrical holes with 30 deg inline injection on a flat plate are obtained for low (M = 0.5) and high (M = 1.5) blowing ratios under high free stream turbulence (FST) (10%). The realizable k‐ε model is used within the RANS framework and a realizable k‐ε-based detached eddy simulation (DES) is used as a hybrid URANS/LES model. Both models are used together with the two-layer zonal model for near-wall simulations. Steady and time-averaged unsteady film cooling effectiveness obtained using these models are compared with available experimental data. It is shown that hybrid URANS/LES models (DES in the present paper) predict more mixing both in the wall-normal and spanwise directions compared to RANS models, while unsteady asymmetric vortical structures of the flow can also be captured. The turbulent heat flux components predicted by the DES model are higher than those obtained by the RANS simulations, resulting in enhanced turbulent heat transfer between the jet and mainstream, and consequently better predictions of the effectiveness. Nevertheless, there still exist some discrepancies between numerical results and experimental data. Furthermore, the unsteady physics of jet and crossflow interactions and the jet lift-off under high FST is studied using the present DES results.


Sign in / Sign up

Export Citation Format

Share Document