turbulence effects
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 55)

H-INDEX

32
(FIVE YEARS 5)

2021 ◽  
Vol 25 (111) ◽  
pp. 201-211
Author(s):  
Mariana Montenegro Montero ◽  
Gustavo Richmond Navarro

This work presents the lift and drag coefficient curves, as functions of the angle of attack, for the NACA0012, S809 and SG6043 airfoils in turbulent flow conditions. The objective is to identify the airfoil with the best aerodynamic performance under conditions that are descriptive of small scale wind turbine. With the use of OpenFOAM, an analysis was done by numerical simulation. In the case of the NACA0012 airfoil, it was found that the performance is insensitive to the changes in turbulence and the Reynold number. The aerodynamic response of the S809 airfoil is to increase both the drag and lift as the turbulence increases. The SG6043 airfoil responds the best out of the three in turbulent flow, given that the lift curves mostly increase with the turbulence. The curves reported in this work are new and not found in previous literature. Keywords: aerodynamics, lift, drag, turbulence References [1]R. Madriz-Vargas, A. Bruce, M. Watt, L. G. Mogollón and H. R. Álvarez, «Community renewable energy in Panama: a sustainability assessment of the “Bocade Lura” PV-Wind-Battery hybrid power system,» Renewable Energy and Environmental Sustainability, vol. 2, nº 18, pp. 1-7, 2017. https://doi.org/10.1051/rees/2017040. [2]S. Mertenes, «Wind Energy in the Built Environment, » Ph.D. dissertation. Multi-Science, Brentwood, 2006. [3]P. Giguere and M. S. Selig, «New airfoils for small horizontal axis wind turbines,» Journal of Solar Energy Engineering-transactions, vol. 120, pp. 108-114, 1988. https://doi.org/10.1115/1.2888052. [4]A. K. Wright and D. H. Wood, «The starting and low wind speed behaviour of a small horizontal axis wind turbine,» Journal of wind engineering and industrial aerodynamics, vol. 92, nº 14-15, pp. 1265-1279, 2004. https://doi.org/10.1016/j.jweia.2004.08.003. [5]G. Richmond-Navarro, M. Montenegro-Montero and C. Otárola, «Revisión de los perfiles aerodinámicos apropiados para turbinas eólicas de eje horizontal y de pequeña escala en zonas boscosas,» Revista Lasallista de Investigación, vol. 17, nº 1, pp. 233-251, 2020. https://doi.org/10.22507/rli.v17n1a22. [6]A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja and V. H. Krishna, «A review on small scale wind turbines, » Renewable and Sustainable Energy Reviews,vol. 56, pp. 1351-1371, 2016. https://doi.org/10.1016/j.rser.2015.12.027. [7]L. Pagnini, M. Burlando and M. Repetto, «Experimental power curve of small-size wind turbines in turbulent urban environment,» Applied Energy, vol. 154,pp. 112-121, 2015. https://doi.org/10.1016/j.apenergy. 2015.04.117. [8]W. D. Lubitz, «Impact of ambient turbulence on performance of a small wind turbine,» Renewable Energy, vol. 61, pp. 69-73, 2014. https://doi.org/10.1016/j.renene.2012.08.015. [9]P. Devinant, T. Laverne and J. Hureau, «Experimental study of wind-turbine airfoil aerodynamics in high turbulence, » Journal of Wind Engineering and Industrial Aerodynamics, vol. 90, nº 6, pp. 689-707, 2002. https://doi.org/10.1016/S0167-6105(02)00162-9. [10]C. Sicot, P. Devinant, S. Loyer and J. Hureau, «Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms,» Journal ofwind engineering and industrial aerodynamics, vol. 96, nº 8-9, pp. 1320-1331, 2008. https://doi.org/10.1016/j.jweia.2008.01.013. [11]C. R. Chu and P. H. Chiang, «Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine,» Journal of Wind Engineering and Industrial Aerodynamics, vol. 124, pp. 82-89, 2014. https://doi.org/10.1016/j.jweia.2013.11.001. [12]Y. Kamada, T. Maeda, J. Murata and Y. Nishida, «Visualization of the flow field and aerodynamic force on a Horizontal Axis Wind Turbine in turbulent inflows,» Energy, vol. 111, pp. 57-67, 2016. https://doi.org/10.1016/j.energy.2016.05.098. [13]Q. A. Li, J. Murata, M. Endo, T. Maeda and Y. Kamada, «Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis WindTurbine (Part I: Power performance),» Energy, vol.113, pp. 713-722, 2016. https://doi.org/10.1016/j.energy.2016.06.138. [14]S. W. Li, S. Wang, J. P. Wang and J. Mi, «Effect of turbulence intensity on airfoil flow: Numerical simulations and experimental measurements,» Applied Mathematics and Mechanics, vol. 32, nº 8, pp. 1029-1038, 2011. https://doi.org/10.1007/s10483-011-1478-8. [15]S. Wang, Y. Zhou, M. M. Alam and H. Yang, «Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers,» Physics of Fluids, vol. 26, nº11, p. 115107, 2014. https://doi.org/10.1063/1.4901969. [16]M. Lin and H. Sarlak, «A comparative study on the flow over an airfoil using transitional turbulence models, » AIP Conference Proceedings, vol. 1738, p.030050, 2016. https://doi.org/10.1063/1.4951806. [17]Langley Research Center, «Turbulence Modelling Resource,» NASA, [Online]. Available: https://turbmodels.larc.nasa.gov/langtrymenter_4eqn.html. [Last access: 08 03 2021].


Author(s):  
Didier Ricard ◽  
Christine Lac

Abstract A giga-large-eddy simulation of a cumulus congestus has been performed with a 5-m resolution in order to examine the fine-scale dynamics and mixing on its edges. At 5-m resolution, the dynamical production of subgrid turbulence clearly dominates over the thermal production, while the situation is reversed for resolved turbulence, the tipping-point occurring near the 250-m scale. Concerning cloud dynamics, the toroïdal circulation already obtained in previous observational and numerical studies remains, with a strong signature on the resolved turbulent fluxes, the most important feature for the exchanges between the cloud and its environment even though numerous smaller eddies are also well resolved. The environment compensates for the upward mass flux through a large-scale compensating subsidence and the so-called “subsiding shell” composed of cloud-edge downdrafts, both having a significant contribution. A partition is used to characterize the dynamics, buoyancy and turbulence of the inner and outer edges of the cloud, the cloud interior and the far environment. On the edges of the cloud, downdrafts caused by the eddies and by evaporative cooling effects coexist with a buoyancy reversal while the cloud interior is mostly rising and positively buoyant. An alternative simulation, where evaporative cooling is suppressed, indicates that this process reinforces the downdrafts near the edges of the cloud and causes a general decrease of the convective circulation. Evaporative cooling has also an impact on the buoyancy reversal and on the fate of the engulfed air inside the cloud.


2021 ◽  
Vol 218 ◽  
pp. 104777
Author(s):  
Zhenqing Liu ◽  
Yiwen Cao ◽  
Yize Wang ◽  
Shuyang Cao ◽  
Qingshan Yang
Keyword(s):  

2021 ◽  
Vol 33 (10) ◽  
pp. 105108
Author(s):  
Pierre-Yves Passaggia ◽  
Nicolas Mazellier ◽  
Azeddine Kourta

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1006
Author(s):  
Ning Yao ◽  
Jingting Liu ◽  
Xun Sun ◽  
Yan Liu ◽  
Songying Chen ◽  
...  

Interactions between particles and bubbles have been cornerstone for the successful applications of froth flotation to the beneficiations of minerals or coal. Particle-bubble interactions are highly physio-chemical processes on the basis of surface science and hydrodynamics. Though these two aspects are deeply interwoven, we focus on the discussions of the effects of turbulence on the interactions between particles and bubbles, i.e., collision, attachment and detachment. It has to be mentioned this effect is not working in one direction and can affect flotation performance in a complicated way. Only when turbulence effects are well understood, flotation processes can be optimised by suitably changing equipment structure or operating parameters. The aim of this paper is to review the most recent progresses in this aspect and to identify the future development in successfully considering turbulence effects on flotation processes.


Author(s):  
Szymon Gladysz ◽  
Max Segel ◽  
Jose Montoya ◽  
Italo Toselli ◽  
Osvaldo Javier Galicia Gasperin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document