Uncertainty Quantification in Large Eddy Simulations of a Rich-Dome Aviation Gas Turbine

Author(s):  
Matthieu Masquelet ◽  
Jin Yan ◽  
Anne Dord ◽  
Gregory Laskowski ◽  
Lee Shunn ◽  
...  

In this work, a rich-dome aviation combustor operating over a range of high-power conditions is investigated using multiple Large Eddy Simulations (LES). The LES flow solutions are obtained with CharLES, a massively-parallel framework for compressible, reacting flows in complex geometries. The CharLES solver constructs a body-conforming mesh from the 3D Voronoi diagram of a set of regularly distributed seed points within the computational domain. The computational domain spans from the compressor exit plane to the combustor exit plane and includes the passages around the combustor liners. A baseline solution is first obtained at nominal conditions using a reference grid and validated using non-dimensional exit profile. Non-intrusive Uncertainty Quantification (UQ) is then employed to characterize the uncertainties on a few key combustor metrics. It is found that the overall variability at the exit plane is actually larger than the input uncertainty. This highlights the non-linear coupling between the flow and the reacting processes inside the combustor. Areas of high temperature variability are highlighted, especially downstream of the dilution holes. Finally, it is found that uncertainty in fuel flowrate has a greater impact on outlet quantities whereas uncertainty in air inlet temperature has a greater impact on liner quantities.

Author(s):  
Adèle Poubeau ◽  
Roberto Paoli ◽  
Daniel Cariolle

This paper focuses on two decisive steps towards Large Eddy Simulation of a solid rocket booster jet. First, three-dimensional Large Eddy Simulations of a non-reactive booster jet including the nozzle were obtained at flight conditions of 20 km of altitude. A particularly long computational domain (400 nozzle exit diameters in the jet axial direction) was simulated, thanks to an innovative local time-stepping method via coupling multi instances of a fluid solver. The dynamics of the jet is analysed and comparison of the results with previous knowledge validates the simulations and confirms that this computational setup can be applied for Large Eddy Simulations of a reactive booster jet. The second part of this paper details the implementation of a simple method to study the hot plume chemistry. Despite its limitations, it is accurate enough to observe the various steps of the chemical mechanism and assess the effect of uncertainties of the rate parameters on chlorine reactions. It was also used to reduce the set of chemical reactions into a short scheme involving a minimum of species and having a limited impact on the physical time step of the Large Eddy Simulations.


2021 ◽  
Author(s):  
Luis G. Bravo ◽  
Muthuvel Murugan ◽  
Anindya Ghoshal ◽  
Simon Su ◽  
Rahul Koneru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document