exit plane
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 4)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Vol 2070 (1) ◽  
pp. 012032
Author(s):  
Syed Abdul Lateef ◽  
A.T. Sriram ◽  
M. Murali Krishnan ◽  
A. Sivathanu Pillai

Abstract SPT-100 electrostatic thruster is considered, and the effects of magnetic circuit is studied by introducing magnetic screen. The magnetic flux density in the discharge channel is generated with the help of one inner coil and four outer coils. The radial magnetic field has to be maximum near the exit plane of the thruster to trap the electrons in acceleration region which are emitted from an external hollow cathode. These electrons help in increasing the ionization rate of the propellant gas. This is obtained by placing magnetic poles near exit plane. It helps to traps the electrons emitted from the external hollow cathode. The magnetic circuit should be designed such that the magnetic flux density is near to zero at the anode plane to reduce interaction of electrons with channel walls. To arrive at such better design, magnetic screens are used. Computational simulations are performed to quantify the magnetic flux density distribution along the channel using COMSOL Multiphysics software. The simulation results show that the obtained radial magnetic flux density is maximum near the exit plane, and the magnetic screens help in reducing the magnetic field at the anode region while maintaining the maximum magnetic field at the exit plane.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dawn Pradeeb S. A. ◽  
Subramanian Thanigaiarasu ◽  
Nagarajakrishnan Premanand

Purpose Control over large-scale coherent structures and stream-wise vortices lead to enhanced entrainment/conservation of the jet which is desirable for most free jet applications such as design of combustion chamber in jet engines and flame length elongation of welding torch used for metal cutting. Design/methodology/approach A co-flow nozzle with lip thickness of 2 mm, between the primary (inner) and secondary (outer) flow, is selected. Three nozzle combinations are used, i.e. C–C (circle–circle), C–E (circle–ellipse) and C–S (circle–square) for acquiring comparative data. For these nozzle combinations, inner nozzle exit plane is kept as a circle, whereas the outer nozzle exit planes are varied to circle, ellipse and square. The exit plane area of outer nozzle for the nozzle combinations has equivalent diameter, De. The nozzles are fabricated in a way that the outer nozzle can be rotated along the longitudinal axis, keeping the inner nozzle intact. Findings The C–C nozzle combination is effective in low Mach number regime in decaying the jet, when the rotational component is introduced. Around 30% reduction in the jet core length is observed for the C–C nozzle combinations without any lip. The C–E nozzle shows sedative result in decaying or preserving the jet. The C–S nozzle combination shows interesting phenomenon, whereby the low subsonic case tends to conserve the jet by 15% and the higher subsonic case tends to decay the jet by 10%. Originality/value The developed nozzle systems show both conservative and destructive effect on the jet, which is desirable for the mentioned applications.


2021 ◽  
Author(s):  
Saarthak Gupta ◽  
Santosh Hemchandra ◽  
Masayasu Shimura ◽  
Santosh Shanbhogue ◽  
Ahmed Ghoniem

Abstract The precessing vortex core (PVC) is a self-excited flow oscillation state occurring in swirl nozzles. This is caused by the presence of a marginally unstable hydrodynamic helical mode that induces precession of the vortex breakdown bubble (VBB) around the flow axis. The PVC can impact emissions and thermoacoustic stability characteristics of combustors in various ways, as several prior studies have shown. In this paper, we examine the impact of centrebody diameter (Dc) on the PVC in a non-reacting flow in a single nozzle swirl combustor. Time resolved high speed stereoscopic PIV (sPIV) measurements are performed for combinations of two swirl numbers, S = 0.67 and 1.17 and Dc = 9.5 mm, 4.73 mm and 0 (i.e. no centrebody). The bulk flow velocity at the nozzle exit plane is kept constant as Ub = 8 m/s for all cases (Re ∼ 20,000). The centrebody end face lies in the nozzle exit plane. A new modal decomposition technique based on wavelet filtering and proper orthogonal decomposition (POD) provides insight into flow dynamics in terms of global modes extracted from the data. The results show that without a centrebody, a coherent PVC is present in the flow as expected. The introduction of a centrebody makes the PVC oscillations intermittent. These results suggest two routes to intermittency as follows. For S = 0.67, the vortex breakdown bubble (VBB) and centrebody wake recirculation zone (CWRZ) regions are nominally distinct. Intermittent separation and merger due to turbulence result in PVC oscillations due to the de-stabilization of the hydrodynamic VBB precession mode of the flow. In the S = 1.17 case, the time averaged VBB position causes it to engulf the centrebody. In this case, the emergence of intermittent PVC oscillations is a result of the response of the flow to broadband stochastic forcing imposed on the time averaged vorticity field due to turbulence.


2019 ◽  
Vol 12 (2) ◽  
pp. 191-201
Author(s):  
Andreas K. Flock ◽  
Ali Gülhan

AbstractSeveral flow phenomena, such as recirculating wake flows or noise generation, occur in aerodynamic configurations with backward facing steps. In this context, subsonic nozzles with constant-radius centerbodies exist, which enable fundamental research of these phenomena for $$M < 1$$M<1. For the supersonic regime, however, the existing database and knowledge are limited. Therefore, this work presents a design approach for a converging-diverging nozzle with constant-radius centerbody. For the nozzle throat, Sauer’s method is modified to include a centerbody. The method of characteristics is used for the subsequent supersonic portion. Comparing the analytical calculations to numerical simulations results in very good agreement and therefore underlines the feasibility of the chosen approach. Viscosity reduced the Mach number on the exit plane by 1.0–1.2% and therefore had little influence.


Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 59 ◽  
Author(s):  
Andrea Palumbo ◽  
Matteo Chiatto ◽  
Luigi de Luca

In many studies concerning synthetic jet flow fields the analysis is usually restricted to simple configurations, such as a single diaphragm oscillating in a cylindrical cavity, which is linked to the external environment with only one orifice/slot. Nonetheless, in many applications the requirement of small sizes and weights leads to many implementation issues, such as asymmetric actuator geometries, presence of several slots and diaphragms and irregular cavity shapes. Therefore, the design of a synthetic jet actuator for a specific flow control problem requires a dedicated study in order to characterize its behavior even in quiescent conditions. The aim of this work is to investigate the behavior of a novel synthetic jet actuator, composed of three independent diaphragms, acting on a single cavity, and linked to the external environment through four slots per diaphragm. The device has been studied in quiescent conditions, both numerically and experimentally. The experimental investigation has been carried out by means of hot-wire measurements. In particular, the distribution of the phase-averaged streamwise velocity along the slot spanwise direction has been detected near the slot exit plane. From the computational side, incompressible direct numerical simulations have been carried out using the open-source OpenFOAM code. The diaphragm motion is mimicked by a inhomogeneous inlet boundary condition, whose amplitude is chosen to match the experimental velocity at the exit plane. A fair agreement between the numerical and the experimental results is achieved for both the velocity field at the slot exit and the main non-dimensional parameters of the synthetic jet. After the validation, the numerical results are finally processed, to obtain information about the vortex motion in the external environment.


Author(s):  
Asad Asghar ◽  
William D. E. Allan ◽  
Marc LaViolette ◽  
Robert Stowe ◽  
Derrick Alexander ◽  
...  

This paper reports the internal performance evaluation of S-duct diffusers with different offset-to-length ratios. The geometric parameters of S-duct diffusers are currently of great interest because of increasing demand for stealth and consequently, their effects on drag and aero-engine stability margin. The generic S-duct diffuser selected as a baseline had a rectangular-entrance and circular exit. Test articles were tested with the high subsonic, Ma = 0.8 and 0.85, flow and were manufactured using 3D printing. stream-wise static pressure and exit-plane total pressure were measured in a test rig using surface pressure taps and a 5-probe rotating rake, respectively. The baseline and variant S-ducts were also simulated through computational fluid dynamics. The investigation indicated the presence of stream-wise and circumferential pressure gradients leading to a separated flow in the S-duct diffusers and distortion at the exit plane. The static pressure recovery decreased and total pressure loss increased with an increase in the offset-to-length ratio. The circumferential distortion at the engine face clearly indicated a trend with respect to the offset-to-length ratio, however radial distortion did not.


2017 ◽  
Vol 89 (6) ◽  
pp. 797-803 ◽  
Author(s):  
Xuzhao He ◽  
Jialing Le ◽  
Si Qin

Purpose Waverider has high lift to drag ratio and will be an idea aerodynamic configuration for hypersonic vehicles. But a structure permitting aerodynamic like waverider is still difficult to generate under airframe’s geometric constrains using traditional waverider design methods. And furthermore, traditional waverider’s aerodynamic compression ability cannot be easily adjusted to satisfy the inlet entrance requirements for hypersonic air-breathing vehicles. The purpose of this paper is to present a new method named osculating general curved cone (OCC) method aimed to improve the shortcomings of traditional waveriders. Design/methodology/approach A basic curved cone is, first, designed by the method of characteristics. Then the waverider’s inlet captured curve and front captured tube are defined in the waverider’s exit plane. Osculating planes are generated along the inlet captured curve and the designed curved cone is transformed to the osculating planes. Streamlines are traced in the transformed curved cone flow field. Combining all streamlines which have been obtained, OCC waverider’s compression surface is generated. Waverider’s upper surface uses the free stream surface. Findings It is found that OCC waverider has good volumetric characteristics and good flow compression abilities compared with the traditional osculating cone (OC) waverider. The volume of OCC waverider is 25 per cent larger than OC waverider at the same design condition. Furthermore, OCC waverider can compress incoming flow to required flow conditions with high total pressure recovery in the waverider’s exit plane. The flow uniformity in the waverider exit plane is quite well. Practical implications The analyzed results show that the OCC waverider can be a practical high performance airframe/forebody for hypersonic vehicles. Furthermore, this novel waverider design method can be used to design a structure permitting aerodynamic like waverider for a practical hypersonic vehicle. Originality/value The paper puts forward a novel waverider design method which can improve the waverider’s volumetric characteristics and compression abilities compared with the traditional waverider design methods. This novel design approach can extend the waverider’s applications for designing hypersonic vehicles.


Author(s):  
Matthieu Masquelet ◽  
Jin Yan ◽  
Anne Dord ◽  
Gregory Laskowski ◽  
Lee Shunn ◽  
...  

In this work, a rich-dome aviation combustor operating over a range of high-power conditions is investigated using multiple Large Eddy Simulations (LES). The LES flow solutions are obtained with CharLES, a massively-parallel framework for compressible, reacting flows in complex geometries. The CharLES solver constructs a body-conforming mesh from the 3D Voronoi diagram of a set of regularly distributed seed points within the computational domain. The computational domain spans from the compressor exit plane to the combustor exit plane and includes the passages around the combustor liners. A baseline solution is first obtained at nominal conditions using a reference grid and validated using non-dimensional exit profile. Non-intrusive Uncertainty Quantification (UQ) is then employed to characterize the uncertainties on a few key combustor metrics. It is found that the overall variability at the exit plane is actually larger than the input uncertainty. This highlights the non-linear coupling between the flow and the reacting processes inside the combustor. Areas of high temperature variability are highlighted, especially downstream of the dilution holes. Finally, it is found that uncertainty in fuel flowrate has a greater impact on outlet quantities whereas uncertainty in air inlet temperature has a greater impact on liner quantities.


Author(s):  
Asad Asghar ◽  
Robert A. Stowe ◽  
William D. E. Allan ◽  
Derrick Alexander

This paper reports the internal performance evaluation of S-duct diffusers with different entrance aspect ratios as part of a parametric investigation of a generic S-duct inlet. The generic S-duct diffusers studied had a rectangular entrance (aspect ratios of 1.5 and 2.0) transitioning S-duct diffuser in high-subsonic (Mach number > 0.8) flow. The test section was manufactured using rapid prototyping to facilitate the parametric investigation of the geometry. Streamwise static pressure and exit-plane total pressure were measured in a test-rig using surface pressure taps and a five-probe rotating rake, respectively. The baseline and a variant were simulated through computational fluid dynamics (CFD). The investigation indicated the presence of streamwise and circumferential pressure gradients leading to a three-dimensional flow in the S-duct diffuser and to distortion at the exit plane. The static pressure recovery increased for the diffuser with the higher aspect ratio. Total pressure losses and circumferential and radial distortions at the exit plane were higher than that of the podded nacelle type of inlet. An increase in the total pressure recovery was observed for the increase in the aspect ratio for the baseline area ratio (1.57) S-ducts, but without a clear trend for the other area ratio (1.8) ducts. The work represents the development of a database on the performance of a particular type of generic inlet. This database will be useful for predicting the performance of aero-engines and air vehicles in high-subsonic flight.


2016 ◽  
Vol 809 ◽  
pp. 72-110 ◽  
Author(s):  
Timothy C. W. Lau ◽  
Graham J. Nathan

Simultaneous measurements of particle velocity and concentration (number density) in a series of mono-disperse, two-phase turbulent jets issuing from a long, round pipe into a low velocity co-flow were performed using planar nephelometry and digital particle image velocimetry. The exit Stokes number,$Sk_{D}$, was systematically varied over two orders of magnitude between 0.3 and 22.4, while the Reynolds number was maintained in the turbulent regime ($10\,000\leqslant Re_{D}\leqslant 40\,000$). The mass loading was fixed at$\unicode[STIX]{x1D719}=0.4$, resulting in a flow that is in the two-way coupling regime. The results show that, in contrast to all previous work where a single Stokes number has been used to characterise fluid–particle interactions, the characteristic Stokes number in the axial direction is lower than that for the radial direction. This is attributed to the significantly greater length scales in the axial motions than in the radial ones. It further leads to a preferential response of particles to gas-phase axial velocity fluctuations,$u_{p}^{\prime }$, over radial velocity fluctuations,$v_{p}^{\prime }$. This, in turn, leads to high levels of anisotropy in the particle-phase velocity fluctuations,$u_{p}^{\prime }/v_{p}^{\prime }>1$, throughout the jet, with$u_{p}^{\prime }/v_{p}^{\prime }$increasing as$Sk_{D}$is increased. The results also show that the region within the first few diameters of the exit plane is characterised by a process of particle reorganisation, resulting in significant particle migration to the jet axis for$Sk_{D}\leqslant 2.8$and away from the axis for$Sk_{D}\geqslant 5.6$. This migration, together with particle deceleration along the axis, causes local humps in the centreline concentration whose value can even exceed those at the exit plane.


Sign in / Sign up

Export Citation Format

Share Document