Radial Inflow Turbine Geometry Generation Method Using Third Order Bezier Curves for Blade Design

Author(s):  
U. Caldiño-Herrera ◽  
J. C. García ◽  
F. Sierra-Espinosa ◽  
J. O. Dávalos ◽  
M. A. Lira

Abstract Radial inflow turbines offer larger efficiency performance for small power applications due to its geometric configuration in which flow varies its radial position along the flow path. The geometry configuration of radial-inflow turbines demands a careful and adequate design of the flow path, since a 90° change of direction occurs from the radial inflow to the axial outflow. The blade camberline also requires attention since it defines the tangential flow direction along the meridional coordinate and any variation in its geometry affects the turbine performance. In this paper, a method for meridional profile and camberline geometry generation is proposed and tested through CFD. The method consists in using fourth order Bezier curves for defining the hub, shroud and mid-height blade meridional profile and third order Bezier curves for defining the relative flow velocity angle along the meridional coordinate, which leads to the camberline angular position in the rotor considering radial fibered blades. The blade thickness is set to vary linearly along the meridional coordinate and along the blade height. Different configurations of blade geometry are proposed and analyzed. These configurations are fixed to satisfy the design parameters. The code is programed in Python and adjusts the geometry data in files that are readable by meshing software. Thereby numerical calculations are performed to verify which configuration of camberline results in better performance. The calculations are done in models with the same boundary conditions and geometric data except for the variation of relative flow velocity angle along the meridional coordinate but setting the inlet and outlet angle to a fixed value. This way, the most suitable camberline geometry can be selected. The CDF model used for this analysis was validated with the experimental results reported by Kang et al. [1]

Author(s):  
Manhong Wen ◽  
Kwun-Lon Ting

Abstract This paper presents G1 and G2 continuity conditions of c-Bezier curves. It shows that the collinear condition for G1 continuity of Bezier curves is generally no longer necessary for c-Bezier curves. Such a relaxation of constraints on control points is beneficial from the structure of c-Bezier curves. By using vector weights, each control point has two extra free design parameters, which offer the probability of obtaining G1 and G2 continuity by only adjusting the weights if the control points are properly distributed. The enlargement of control point distribution region greatly simplifies the design procedure to and enhances the shape control on constructing composite curves.


2021 ◽  
Author(s):  
Guang Xi ◽  
Chenxi Zhao ◽  
Yonghong Tang ◽  
Zhiheng Wang

Abstract The shrouded and unshrouded impellers are two typical kinds of impellers, which are widely utilized in centrifugal compressors of various applications. Centrifugal compressors with unshrouded impellers are generally recognized to display inferior performance to the shrouded impellers with the same geometry. In this paper, a comparative experiment shows some results inconsistent with conventional cognition. Measured performance indicates that the peak efficiency of the centrifugal compressor with an unshrouded impeller is higher than the shrouded one, where the two impellers have the same geometry of meridional profile and blade central plane, and matched the same vaneless diffuser and volute. In order to explore the causes of this divergence, the effects of factors such as blade thickness, surface roughness of components, tip clearance and sealing leakage characteristics on performance are analyzed by CFD code. Numerical results show that reasonable reduction in the blade thickness and improvement on the surface quality of the impeller could effectively increase the peak efficiency and the choke mass flow rate of the shrouded impeller. The unshrouded impeller with arbitrary blade surfaces would be deformed under the action of centrifugal force to achieve a small tip clearance during operation, and then obtains higher efficiency at design speed. The research results are helpful to evaluate the performance potential and sensitive design parameters of shrouded and unshrouded impellers.


2021 ◽  
Author(s):  
Satyanarayana G. Manyam ◽  
David Casbeer ◽  
Isaac E. Weintraub ◽  
Dzung M. Tran ◽  
Justin M. Bradley ◽  
...  

2021 ◽  
Vol Accepted ◽  
Author(s):  
Bayram Şahin ◽  
Aslı Ayar

2021 ◽  
Vol 18 (4) ◽  
pp. 172988142110192
Author(s):  
Ben Zhang ◽  
Denglin Zhu

Innovative applications in rapidly evolving domains such as robotic navigation and autonomous (driverless) vehicles rely on motion planning systems that meet the shortest path and obstacle avoidance requirements. This article proposes a novel path planning algorithm based on jump point search and Bezier curves. The proposed algorithm consists of two main steps. In the front end, the improved heuristic function based on distance and direction is used to reduce the cost, and the redundant turning points are trimmed. In the back end, a novel trajectory generation method based on Bezier curves and a straight line is proposed. Our experimental results indicate that the proposed algorithm provides a complete motion planning solution from the front end to the back end, which can realize an optimal trajectory from the initial point to the target point used for robot navigation.


Sign in / Sign up

Export Citation Format

Share Document