relative flow
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 39)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ashima Malhotra ◽  
Shraman Goswami ◽  
Pradeep A M

Abstract The aerodynamic performance of a compressor rotor is known to deteriorate due to surface roughness. It is important to understand this deterioration as it impacts the overall performance of the engine. This paper, therefore, aims to numerically investigate the impact of roughness on the performance of an axial compressor rotor at different rotational speeds. In this numerical study, the simulations are carried out for NASA Rotor37 at 100%, 80%, and 60% of its design speed. with and without roughness on the blade surface. These speeds are chosen because they represent different flow regimes. The front stages of a multistage compressor usually have a supersonic or transonic regime whereas the middle and aft stages have a subsonic regime. Thus, these performance characteristics can give an estimate of the impact on the performance of a multistage compressor. At 100% speed (design speed), the relative flow is supersonic, at 80% of design speed, the relative flow is transonic and at 60% of design speed, the relative flow is subsonic. Detailed flow field investigations are carried out to understand the underlying flow physics. The results indicate that, for the same amount of roughness, the degradation in the performance is maximum at 100% speed where the rotor is supersonic, while the impact is minimum at 60% speed where the rotor is subsonic. Thus, the rotor shock system plays an important role in determining the performance loss due to roughness. It is also observed that the loss increases with increased span for 100% and 80% speeds, but for 60% speed, the loss is almost constant from the hub to the shroud. This is because, with the increased span, the shock strength increases for 100% and 80% speeds, whereas at 60% speed flow is subsonic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giacomo Calzetti ◽  
Paolo Mora ◽  
Enrico Borrelli ◽  
Riccardo Sacconi ◽  
Guido Ricciotti ◽  
...  

AbstractThe effects of anti-vascular endothelial growth factor (anti-VEGF) agents on the native ocular vasculature are poorly understood. This pilot study aimed to assess short-term changes in retinal and choroidal perfusion after anti-VEGF treatment for neovascular exudative age-related macular degeneration (nAMD) using the relative flow volume (RFV) parameter derived from laser speckle flowgraphy. Ten treatment-naïve nAMD patients underwent measurements of mean, maximum, minimum, and differential RFV within a retinal arteriolar segment and a choroidal vessel segment outside the neovascular area. Measurement of retinal RFV (rRFV), choroidal RFV (cRFV), and subfoveal choroidal thickness (SCT) was repeated 9 and 35 days after a single anti-VEGF injection. The treatment caused a statistically significant decrease in the mean rRFV, mean cRFV, and SCT during the follow-up (p < 0.05). At the intermediate visit, the mean cRFV and SCT were − 17.6% and − 6.4% compared to baseline, respectively. However, at the final measurement, the mean cRFV was not different from the baseline value, which indicated waning of the anti-VEGF effect. In conclusion, a single anti-VEGF injection in treatment-naïve nAMD resulted in a decrease in retinal arteriolar and choroidal perfusion, according to the RFV parameter, which is a promising tool to simultaneously assess retinal and choroidal perfusion changes in response to anti-VEGF therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hua Xia ◽  
Fuqiang Luo ◽  
Zhong Wang

The fuel injector is an important component of the diesel engine. It has a great influence on the atomization of diesel fuel injection, the formation of mixed gas, and combustion emissions. Due to the current nozzle structure, processing level, and the internal hydraulic conditions of each nozzle, there are certain differences between the injection rules of each hole, and there are few methods to quantify the quality of the injector using mathematical methods in engineering. Based on the principle of spray momentum, this paper measures the injection characteristics of each hole of four five-hole pressureless chamber injectors of the same model and analyzes the circulating fuel injection volume and flow coefficient of each injector and each hole under different working conditions. It is proposed to evaluate the quality of the injector with the average circulating fuel injection volume, average flow coefficient, and nonuniformity as indicators. The test results are as follows: there are differences in the circulating fuel injection volume and flow coefficient between each hole of the same fuel injector. With the increase of the fuel injection pump speed, the average circulating fuel injection volume of each hole differs by 2.8%–47.5%, and the average flow coefficient differs by 3.7%–30%; as the fuel injection volume increases, the average circulating fuel injection volume of each injector differs 1.8%–36%, and the average flow coefficient difference is 2.5%–28.7%. The circulating fuel injection volume and flow coefficient of different fuel injectors of the same model are different. With the increase of the fuel injection pump speed, the average circulating fuel injection volume of each injector differs by 3.5%–9.6%, and the average flow coefficient differs by 1.4%–5.7%; as the fuel injection volume increases, the average circulating fuel injection volume of each injector differs 0.3%–5.5%, and the average flow coefficient difference is 2.8–4.2%. The relative flow coefficient of each hole differs from 0 to 0.02, and the nonuniformity differs from 1.8% to 16.9%. The relative circulating fuel injection amount of each hole differs from 0.02 to 0.1, and the nonuniformity differs from 1.1% to 6.9%. The relative flow coefficient of each hole and its nonuniformity is smaller than the relative circulating fuel injection volume of each hole and its nonuniformity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jan Malm ◽  
Johan Birnefeld ◽  
Laleh Zarrinkoob ◽  
Anders Wåhlin ◽  
Anders Eklund

Objective: A clinically feasible, non-invasive method to quantify blood flow, hemodynamics, and collateral flow in the vertebrobasilar arterial tree is missing. The objective of this study was to evaluate the feasibility of quantifying blood flow and blood flow patterns using 4D flow magnetic resonance imaging (MRI) in consecutive patients after an ischemic stroke in the posterior circulation. We also explore if 4D-flow, analyzed in conjunction with computed tomography angiography (CTA), has potential as a diagnostic tool in posterior circulation stroke.Methods: Twenty-five patients (mean age 62 years; eight women) with acute ischemic stroke in the posterior circulation were investigated. At admission, all patients were examined with CTA followed by MRI (4D flow MRI and diffusion-weighted sequences) at median 4 days after the presenting event. Based on the classification of Caplan, patients were divided into proximal/middle (n = 16) and distal territory infarcts (n = 9). Absolute and relative blood flow rates were calculated for internal carotid arteries (ICA), vertebral arteries (VA), basilar artery (BA), posterior cerebral arteries (P1 and P2), and the posterior communicating arteries (Pcom). In a control group consisting of healthy elderly, the 90th and 10th percentiles of flow were calculated in order to define normal, increased, or decreased blood flow in each artery. “Major hemodynamic disturbance” was defined as low BA flow and either low P2 flow or high Pcom flow. Various minor hemodynamic disturbances were also defined. Blood flow rates were compared between groups. In addition, a comprehensive analysis of each patient’s blood flow profile was performed by assessing relative blood flow rates in each artery in conjunction with findings from CTA.Results: There was no difference in total cerebral blood flow between patients and controls [604 ± 117 ml/min vs. 587 ± 169 ml/min (mean ± SD), p = 0.39] or in total inflow to the posterior circulation (i.e., the sum of total VA and Pcom flows, 159 ± 63 ml/min vs. 164 ± 52 ml/min, p = 0.98). In individual arteries, there were no significant differences between patients and controls in absolute or relative flow. However, patients had larger interindividual relative flow variance in BA, P1, and P2 (p = 0.01, &lt;0.01, and 0.02, respectively). Out of the 16 patients that had proximal/middle territory infarcts, nine had CTA findings in VA and/or BA generating five with major hemodynamic disturbance identified with 4D flow MRI. For those without CTA findings, seven had no or minor 4D flow MRI hemodynamic disturbance. Among nine patients with distal territory infarcts, one had major hemodynamic disturbances, while the remaining had minor disturbances.Conclusion: 4D flow MRI contributed to the identification of the patients who had major hemodynamic disturbances from the vascular pathologies revealed on CTA. We thus conclude that 4D flow MRI could add valuable hemodynamic information when used in conjunction with CTA.


2021 ◽  
Author(s):  
E. J. Gunn ◽  
T. Brandvik ◽  
M. J. Wilson ◽  
R. Maxwell

Abstract This paper considers the impact of a damaged leading edge on the stall margin and stall inception mechanisms of a transonic, low pressure ratio fan. The damage takes the form of a squared-off leading edge over the upper half of the blade. Full-annulus, unsteady CFD simulations are used to explain the stall inception mechanisms for the fan at low- and high-speed operating points. A combination of steady and unsteady simulations show that the fan is predicted to be sensitive to leading edge damage at low speed, but insensitive at high speed. This blind prediction aligns well with rig test data. The difference in response is shown to be caused by the change between subsonic and supersonic flow regimes at the leading edge. Where the inlet relative flow is subsonic, rotating stall is initiated by growth and propagation of a subsonic leading edge flow separation. This separation is shown to be triggered at higher mass flow rates when the leading edge is damaged, reducing the stable flow range. Where the inlet relative flow is supersonic, the flow undergoes a supersonic expansion around the leading edge, creating a supersonic flow patch terminated by a shock on the suction surface. Rotating stall is triggered by growth of this separation, which is insensitive to leading edge shape. This creates a marked difference in sensitivity to damage at low- and high-speed operating points.


Author(s):  
Charles N. Helms ◽  
Lance F. Bosart

AbstractOn 4–5 September 2013, a relatively shallow layer of northerly dry air flow was observed just west of the core deep convection associated with the low-level center of the pre-Gabrielle (2013) tropical disturbance. Shortly thereafter, the core deep convection of the disturbance collapsed after having persisted for well over 24 hours. The present study provides an in-depth analysis of the interaction between this dry air flow layer and the pre-Gabrielle disturbance core deep convection using a combination of observations, reanalysis fields, and idealized simulations. Based on the analysis, we conclude that the dry air flow layer played an important role in the collapse of the core deep convection in the pre-Gabrielle disturbance. Furthermore, we found that the presence of storm-relative flow was critical to the inhibitive effects of the dry air flow layer on deep convection. The mechanism by which the dry air flow layer inhibited deep convection was found to be enhanced dry air entrainment.


2021 ◽  
Vol 2(50) ◽  
Author(s):  
Nikolay Bachev ◽  
◽  
Alena Shilova ◽  
Oleg Matyunin ◽  
Oksana Betinskaya ◽  
...  

An integral part of any open-type gas turbine plant is a low-emission combustion chamber, which is usually two-zone and cooled. One of the ways to reduce emission of harmful substanc-es is organizing low-emission low-temperature lean combustion with external heating of compo-nents. This paper investigates the effect of external heating of air and fuel gas on expansion of the lower combustion limit and stable flame position in a single-zone uncooled combustion chamber of a microgas turbine power plant. Stable position of the flame front in combustion chambers of this type mainly depends on the ratio between the average flow rate of the combus-tible-air mixture and the rate of turbulent combustion. This ratio depends on thermal, gas-dynamic, thermochemical and geometric factors. The purpose of this work is to substantiate the possibility of using the relative flow rate as a generalized characteristic. This goal was achieved in processing a large amount of published experimental data and numerical modeling of low-temperature combustion of lean mixtures. The most significant research result is determination of the range of relative flow rate (gk = 0.3…3.5·10-4 kg⁄s∙N), at which it is possible to ensure sta-ble flame position in a single-zone combustion chamber. Significance of the obtained results lies in the fact that using the relative flow rate makes it possible to quickly determine and analyze the geometric and gas-dynamic parameters and characteristics of turbulent combustion in com-bustion chambers of micro-gas turbine power plants.


Author(s):  
Matthew D. Flournoy ◽  
Erik N. Rasmussen

AbstractRecent studies have highlighted the importance of near-ground storm-relative helicity (SRH) in supercell and tornado processes and how surface friction can play a role. In this study, we use an analytical approach to examine how uniform changes to the ground-relative wind profile above the near-ground layer influence SRH within the near-ground layer. We show how the ground-relative influence of surface friction alters the near-ground shear profile. For idealized semicircular and straight shear profiles, increasing preexisting ground-relative flow above the near-ground layer yields increasing SRH. The magnitude of the SRH increase is sensitive to storm motion, with more deviant motion yielding greater SRH increases given the same increase in ground-relative flow. Supercells may be more susceptible to storm-induced SRH enhancements given their deviant motion and ability to increase ground-relative flow in the background environment.


2021 ◽  
Vol 5 (1) ◽  
pp. 49-59
Author(s):  
Malvika Arya ◽  
Marco Bonini Filho ◽  
Carl B. Rebhun ◽  
Eric M. Moult ◽  
Byungkung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document