Infrared Micro-Particle Image Velocimetry of Fluid Flow in Silicon-Based Microdevices

Volume 4 ◽  
2004 ◽  
Author(s):  
Dong Liu ◽  
Suresh V. Garimella ◽  
Steve T. Wereley

A non-intrusive diagnostic technique, infrared micro-particle image velocimetry (IR-PIV), is developed for measuring flow fields within MEMS devices with micron-scale resolution. This technique capitalizes on the transparency of silicon in the infrared region, and overcomes the limitation posed by the lack of optical access with visible light to sub-surface flow in silicon-based micro-structures. Experiments with laminar flow of water in a circular micro-capillary tube of hydraulic diameter 255 μm demonstrate the efficacy of this technique. The experimental measurements agree very well with velocity profiles predicted from laminar theory. Cross-correlation and auto-correlation algorithms are employed to measure very-low and moderate-to-high velocities, respectively; the former approach is suitable for biomedical applications while the latter would be needed for measurements in electronics cooling. The results indicate that the IR-PIV technique effectively extends the application of regular micro-PIV techniques, and has great potential for flow measurements in silicon-based microdevices.

PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81198 ◽  
Author(s):  
Elizabeth Antoine ◽  
Cara Buchanan ◽  
Kamel Fezzaa ◽  
Wah-Keat Lee ◽  
M. Nichole Rylander ◽  
...  

Author(s):  
Tariq Ahmad ◽  
Ibrahim Hassan ◽  
Roland Muwanga

An experimental study has been carried out to explore the laminar hydrodynamic development length in the entrance region of adiabatic square microchannels. Flow field measurements are acquired through the use of micro-Particle Image Velocimetry (micro-PIV), a non-intrusive particle tracking and flow observation technique. With the application of micro-PIV, entrance length flow field data is obtained for two different microchannel hydraulic diameters of 500 μm and 100 μm, both of which have cross-sectional aspect ratios of one. The working fluid is distilled water, and velocity profile data is acquired over a laminar Reynolds number range from 0 to 200. The test sections were designed as to provide a sharpedged microchannel inlet from an infinitely sized reservoir, at least 100 times wider and higher than the microchannel hydraulic diameter. Also, all microchannels have a length-to-diameter ratio of at least 100, to assure fully developed flow at the channel exit. The micro-PIV procedure is validated in the fully developed region with comparison to Navier-Stokes momentum equations. Good agreement was found with comparison to conventional entrance length correlations for ducts, and no influence of scaling was observed.


Sign in / Sign up

Export Citation Format

Share Document