Normal and Explosive Boiling of Argon on Nanostructured Copper Surface: A Molecular Dynamics Study

Author(s):  
Hamid Reza Seyf ◽  
Yuwen Zhang

Nonequilibrium molecular dynamics (NEMD) is carried out to investigate the normal and explosive boiling of thin film adsorbed on a metal substrate whose surface is structured by an array of nanoscale spherical copper particles. It is found that superheat degree and size of nanoparticles have significant influences on the location of atoms at multiple times and net evaporation rate. For the cases with nanostructure, liquid respond very quickly and evaporation rate increase with increasing the size of particles from 1 to 2 nm while it decreases for particles diameter of 3 nm.

2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Hamid Reza Seyf ◽  
Yuwen Zhang

Molecular Dynamics (MD) simulation is carried out to investigate the normal and explosive boiling of thin film adsorbed on a metal substrate whose surface is structured by an array of nanoscale spherical particles. The molecular system is comprised of the liquid and vapor argon as well as a copper wall. The nanostructures have spherical shape with uniform diameters while the thickness of liquid film is constant. The effects of transvers and longitudinal distances as well as the diameter of nanoparticles are analyzed. The simulation is started from an initial configuration for three phases (liquid argon, vapor argon and solid wall); after equilibrating the system at 90 K, the wall is heated suddenly to a higher temperature that is well beyond the critical temperature of argon. Two different superheat degrees are selected: a moderately high temperature of 170 K for normal evaporation and much higher temperature 290 K for explosive boiling. By monitoring the space and time dependences of temperature and density as well as net evaporation rate, the normal and explosive boiling process on a flat surface with and without nanostructures are investigated. The results show that the nanostructure has significant effect on evaporation/boiling of thin film. The degrees of superheat and size of nanoparticles have significant effects on the trajectories of particles and net evaporation rate. For the cases with nanostructure, liquid responds very quickly and the number of evaporation molecules increases with increasing the size of particles from 1 to 2 nm while it decreases for d = 3 nm.


Sign in / Sign up

Export Citation Format

Share Document