The Nuclear Fuel Services, Inc. Program to Support Disposition of Enriched Uranium-Bearing Materials

Author(s):  
Stephen M. Schutt ◽  
Norman P. Jacob

The disposition of surplus nuclear materials has become one of the most pressing issues of our time [1, 2]. Numerous agencies have invoked programs with the purpose of removing such materials from various international venues and dispositioning these materials in a manner that achieves non-proliferability. This paper describes the Nuclear Fuel Services, Inc (NFS) Nuclear Material Disposition Program, which to date has focused on a variety of Special Nuclear Material (SNM), in particular uranium of various enrichments. The major components of this program are discussed, with emphasis on recycle and return of material to the nuclear fuel cycle.

MRS Bulletin ◽  
2010 ◽  
Vol 35 (11) ◽  
pp. 859-866 ◽  
Author(s):  
Rodney C. Ewing ◽  
Wolfgang Runde ◽  
Thomas E. Albrecht-Schmitt

The resurgence of nuclear power as a strategy for reducing greenhouse gas (GHG) emissions has, in parallel, revived interest in the environmental impact of actinides. Just as GHG emissions are the main environmental impact of the combustion of fossil fuels, the fate of actinides, consumed and produced by nuclear reactions, determines whether nuclear power is viewed as an environmentally “friendly” source of energy. In this article, we summarize the sources of actinides in the nuclear fuel cycle, how actinides are separated by chemical processing, the development of actinide-bearing materials, and the behavior of actinides in the environment. At each stage, actinides present a unique and complicated behavior because of the 5f electronic configurations.


Author(s):  
Tadahiro Katsuta

Political and technical advantages to introduce spent nuclear fuel interim storage into Japan’s nuclear fuel cycle are examined. Once Rokkasho reprocessing plant starts operation, 80,000 tHM of spent Low Enriched Uranium (LEU) fuel must be stored in an Away From Reactor (AFR) interim storage site until 2100. If a succeeding reprocessing plant starts operating, the spent LEU will reach its peak of 30,000 tHM before 2050, and then will decrease until the end of the second reprocessing plant operation. Throughput of the second reprocessing plant is assumed as twice of that of Rokassho reprocessing plant, indeed 1,600tHM/year. On the other hand, tripled number of final disposal sites for High Level Nuclear Waste (HLW) will be necessary with this condition. Besides, large amount of plutonium surplus will occur, even if First Breeder Reactors (FBR)s consume the plutonium. At maximum, plutonium surplus will reach almost 500 tons. These results indicate that current nuclear policy does not solve the spent fuel problems but rather complicates them. Thus, reprocessing policy could put off the problems in spent fuel interim storage capacity and other issues could appear such as difficulties in large amount of HLW final disposal management or separated plutonium management. If there is no reprocessing or MOX use, the amount of spent fuel will reach over 115,000 tones at the year of 2100. However, the spent fuel management could be simplified and also the cost and the security would be improved by using an interim storage primarily.


2021 ◽  
Vol 7 ◽  
pp. 19
Author(s):  
Tomohiro Okamura ◽  
Ryota Katano ◽  
Akito Oizumi ◽  
Kenji Nishihara ◽  
Masahiko Nakase ◽  
...  

Nuclear Material Balance code version 4.0 (NMB4.0) has been developed through collaborative R&D between TokyoTech&JAEA. Conventional nuclear fuel cycle simulation codes mainly analyze actinides and are specialized for front-end mass balance analysis. However, quantitative back-end simulation has recently become necessary for considering R&D strategies and sustainable nuclear energy utilization. Therefore, NMB4.0 was developed to realize the integrated nuclear fuel cycle simulation from front- to back-end. There are three technical features in NMB4.0: 179 nuclides are tracked, more than any other code, throughout the nuclear fuel cycle; the Okamura explicit method is implemented, which contributes to reducing the numerical cost while maintaining the accuracy of depletion calculations on nuclides with a shorter half-life; and flexibility of back-end simulation is achieved. The main objective of this paper is to show the newly developed functions, made for integrated back-end simulation, and verify NMB4.0 through a benchmark study to show the computational performance.


2019 ◽  
Vol 5 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Andrey Yu. Petrov ◽  
Alexander V. Shutikov ◽  
Nikolay N. Ponomarev-Stepnoy ◽  
Valery S. Bezzubtsev ◽  
Mikhail V. Bakanov ◽  
...  

Possible options of organization of two-component energy system with closed nuclear fuel cycle (CNFC) and new business potential associated with provision of CFC services to foreign customers are examined. Dominating role in the development of nuclear power generation is assigned to VVER reactors with gradually increasing fraction of sodium-cooled fast breeder reactors (FR) incorporated within the joint nuclear fuel cycle operated on MOX-fuel. Components of such energy system perform the following functions: 1. Fast reactors: Generate electric power in base-load mode (possibility of fine tuning of reactor power within limited range (100 – 75 – 100%) is assumed); Utilize waste and/or regenerated uranium for re-fueling power reactors, produce plutonium applicable to the maximum extent for manufacturing MOX-fuel for VVER reactors; Incinerate long-lived highly radioactive wastes – minor actinides separated during reprocessing spent nuclear fuel of FR and VVER reactors. 2. VVER reactors: Generate electricity in compliance with manoeuvrability requirements imposed by the utility company operating the energy system; Utilize MOX-fuel instead of UO2 fuel; Are offered for export with the option of returning SNF back to Russia; Plutonium extracted from VVER spent fuel is used for manufacturing MOX-fuel for SFR. 3. Nuclear fuel cycle facilities: Provide reprocessing of SNF from VVER and SFR with extraction of nuclear materials for recycling; Use depleted or reprocessed uranium and plutonium extracted from spent nuclear fuel for manufacturing MOX-fuel; Provide partitioning of RAW for subsequent utilization of minor actinides and reduction of risks of proliferation of nuclear materials, conditioning and disposal of RAW. Russia possesses capacities for establishing the two-component system with CNFC, as well as the new business approach to rendering CNFC services to foreign customers.


Author(s):  
N. E. Bixler

The Global Nuclear Futures Model (GNFM) is a dynamic simulation tool that provides an integrated framework to model key aspects of nuclear energy, nuclear materials storage and disposition, global nuclear materials management, and nuclear proliferation risk. It links nuclear energy and other energy shares dynamically to greenhouse gas emissions and twelve other measures of environmental impact. It presents historical data from 1990 to 2000 and extrapolates energy demand through the year 2050. More specifically, it contains separate modules for energy, the nuclear fuel cycle front end, the nuclear fuel cycle back end, defense nuclear materials, environmental impacts, and measures of the potential for nuclear proliferation. It is globally integrated but also breaks out five regions of the world so that environmental impacts and nuclear proliferation concerns can be evaluated on a regional basis. The five regions are the United States of America (USA), The Peoples Republic of China (China), the former Soviet Union (FSU), the OECD nations excluding the USA, and the rest of the world (ROW).


Author(s):  
Charles McCombie ◽  
Neil Chapman ◽  
Thomas H. Isaacs

Interest in expanding nuclear power globally continues to grow and various studies are underway to examine all issues associated with much expanded nuclear programmes. The most open questions today are related to the security and non-proliferation implications and to the disposal of radioactive wastes. The security and proliferation concerns have been almost entirely focussed on enrichment technology at the front-end of the nuclear fuel cycle and on reprocessing. Although these are the highest risk areas, it is also important that the potential security problems associated with waste management (in particular with the storage and disposal of spent fuel and radioactive wastes) are not neglected. Furthermore, the costs of national geological repositories imply that, for new or small nuclear programmes, such facilities can be implemented only in the far future, if at all. The international community should continue to strengthen its efforts to highlight the risks and to facilitate solutions that reduce the threats of nuclear materials being distributed widely across the globe. In practice, this challenge has been taken up by a number of organisations that are developing initiatives that can alleviate the potential global security and proliferation problems by promoting multinational approaches to the fuel cycle. This paper addresses those initiatives that are concerned with the storage and final disposal of radioactive wastes and spent nuclear fuel.


Sign in / Sign up

Export Citation Format

Share Document