Flow Characteristics and Frictional Pressure Drops of Gas-Liquid Two-Phase Flow in Mini-Micro Pipes and at Vena Contract and Expansion

Author(s):  
Hiroyasu Ohtake ◽  
Hideyasu Ohtaki ◽  
Yasuo Koizumi

The frictional pressure drops and two-phase flow patterns of gas-liquid two-phase flow in mini-micro pipes and at vena contract and expansion were investigated experimentally. Test liquid was water; test gas was argon. The diameter of the test mini-pipe was 0.5, 0.25 and 0.12 mm, respectively. The pressure drop data and the flow pattern were collected over 2.1 < Ug < 92.5 m/s for the superficial gas velocity and 0.03 < Ul < 10 m/s for the superficial liquid velocity. The experimental results show that the flow patterns were slug, churn, ring and annular flows; pure bubbly flow pattern was not observed in a range of the present experimental conditions. The two-phase friction multiplier data for D > 0.5 mm showed to be in good agreement with the conventional correlations. On the other hand, the two-phase friction multiplier data for D < 0.25 mm differed from the calculated values by the conventional correlations. Then, thickness of liquid film around a gas plug and size of gas core were estimated and the effect of frictional pressure drop on channel size was discussed through Knudsen Number of gas and instability on liquid-gas interface. The coefficients of sudden enlargement and sudden contraction in mini-pipes for the gas-water two-phase flow were modified from the present experimental results.

Author(s):  
Hiroyasu Ohtake ◽  
Hideyasu Ohtaki ◽  
Masato Hagiwara ◽  
Yasuo Koizumi

The frictional pressure drops of gas-liquid two-phase flow in mini-micro pipes and at vena contract and expansion were investigated experimentally and analytically. Pressure drops of straight pipe, sudden enlargement and sudden contraction of gas-liquid two-phase flow in mini-pipes were measured. Test liquid was water at room temperature; test gas was argon. The diameter of the test mini-pipe was 0.5, 0.25 and 0.12 mm, respectively; the length was 500, 250 and 50 mm, respectively. The cross-sectional ratio of the contraction was about 1000; the ratio of the enlargement was about 0.001. The pressure drop data and the flow pattern were collected over 3.0 &lt; UG &lt; 130 m/s for the superficial gas velocity and 0.02 &lt; UL &lt; 6.0 m/s for the superficial liquid velocity. The two-phase friction multiplier data for D &gt; 0.5 mm showed to be in good agreement with the conventional correlations. On the other hand, the two-phase friction multiplier data for D &lt; 0.25 mm differed from the calculated values by the conventional correlations. Then, thickness of liquid film around a gas plug and size of gas core were estimated and the effect of frictional pressure drop on channel size was discussed through Knudsen Number of gas and instability on liquid-gas interface. Namely, the effect of mini-pipe was rarefaction effects, Kn&lt;0.1. New correlation of frictional pressure drop of gas-liquid two-phase flow is proposed for mini pipes. The coefficients of sudden enlargement and sudden contraction in mini-pipes for the gas-water two-phase flow were modified from the present experimental results. The experimental results were also examined through numerical simulation by a commercial code.


Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2004 ◽  
Vol 126 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406×2.032mm2 cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Features unique to two-phase micro-channel flow were identified and employed to validate key assumptions of an annular flow boiling model that was previously developed to predict pressure drop and heat transfer in two-phase micro-channel heat sinks. This earlier model was modified based on new findings from the adiabatic two-phase flow study. The modified model shows good agreement with experimental data for water-cooled heat sinks.


2016 ◽  
Vol 2016 (0) ◽  
pp. J0540102
Author(s):  
Hideo IDE ◽  
Takayuki UMENO ◽  
Eiji KINOSHITA ◽  
Takeshi OhTAKA ◽  
Ryo KUROSHIMA

2021 ◽  
Author(s):  
Faraj Ben Rajeb ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
Amer Aborig ◽  
Mohamed M. Awad ◽  
...  

Abstract Slug flow is one of the most common flow patterns in non-Newtonian two-phase flow in pipes. It is a very common occurrence in gas-liquid two-phase flow in the pipe. Usually, it is an unfavorable flow pattern due to its unsteady nature, intermittency as well as high pressure drop. The differences between slug flow and elongated bubble flow are not clear because usually these two types of flow combined under one flow category. In general, these two-phase flow regimes are commonly defined as intermittent flow. In the present study, pressure gradient, and wave behavior in slug flow have been investigated depending on experimental work. In addition, void fraction has been estimated regarding available superficial liquid and gas velocities. The experimental records of superficial velocities of gas and liquid for slug flow and other flow patterns is used to create flow regime map for the gas non-Newtonian flow system. The effect of investigated flow regime velocities for non-Newtonian/gas flow on pressure drop and void fraction is reported. Pressure drop has been discovered to be reduced in slug flow more than other flow patterns due to high shear thinning behavior.


Author(s):  
Hiroyasu Ohtake ◽  
Hideyasu Ohtaki ◽  
Yasuo Koizumi

The frictional pressure drops of gas-liquid two-phase flow in mini-pipes and mini-rectangular channels were investigated experimentally. The following test channels were used in the present experiments: commercial stainless-steel circular tubes with 0.6, 0.5 and 0.25 mm in inner diameter, FEP circular tube of 0.4 mm in inner diameter and rectangular channels, made of Acrylic resin, with 0.39 × 20.4 mm, 0.21 × 9.75 mm, 0.26 × 4.28 mm and 0.18 × 1.87 mm in height and width, respectively. The pressure drops of straight pipe, sudden enlargement and sudden contraction of gas-liquid two-phase flow in mini-pipes were measured for the test mini-channels. The pressure drops of rectangular minichannel were also measured. Experimental result showed that measured two-phase friction multipliers agreed well with a conventional Lockhart-Martinelli correlation for circular tubes and Mishima-Hibiki’s correlation for rectangular channels. Observed flow patterns by visualization were bubbly, slug, churn, ring and annular flow; the flow patterns in the present experiments were reproduced well by Baker’s flow pattern map.


Sign in / Sign up

Export Citation Format

Share Document