Experimental and Analytical Studies on Frictional Pressure Drops of Gas-Liquid Two-Phase Flow in Mini-Micro Pipes and at Vena Contract and Expansion

Author(s):  
Hiroyasu Ohtake ◽  
Hideyasu Ohtaki ◽  
Masato Hagiwara ◽  
Yasuo Koizumi

The frictional pressure drops of gas-liquid two-phase flow in mini-micro pipes and at vena contract and expansion were investigated experimentally and analytically. Pressure drops of straight pipe, sudden enlargement and sudden contraction of gas-liquid two-phase flow in mini-pipes were measured. Test liquid was water at room temperature; test gas was argon. The diameter of the test mini-pipe was 0.5, 0.25 and 0.12 mm, respectively; the length was 500, 250 and 50 mm, respectively. The cross-sectional ratio of the contraction was about 1000; the ratio of the enlargement was about 0.001. The pressure drop data and the flow pattern were collected over 3.0 < UG < 130 m/s for the superficial gas velocity and 0.02 < UL < 6.0 m/s for the superficial liquid velocity. The two-phase friction multiplier data for D > 0.5 mm showed to be in good agreement with the conventional correlations. On the other hand, the two-phase friction multiplier data for D < 0.25 mm differed from the calculated values by the conventional correlations. Then, thickness of liquid film around a gas plug and size of gas core were estimated and the effect of frictional pressure drop on channel size was discussed through Knudsen Number of gas and instability on liquid-gas interface. Namely, the effect of mini-pipe was rarefaction effects, Kn<0.1. New correlation of frictional pressure drop of gas-liquid two-phase flow is proposed for mini pipes. The coefficients of sudden enlargement and sudden contraction in mini-pipes for the gas-water two-phase flow were modified from the present experimental results. The experimental results were also examined through numerical simulation by a commercial code.

Author(s):  
Hiroyasu Ohtake ◽  
Hideyasu Ohtaki ◽  
Yasuo Koizumi

The frictional pressure drops and two-phase flow patterns of gas-liquid two-phase flow in mini-micro pipes and at vena contract and expansion were investigated experimentally. Test liquid was water; test gas was argon. The diameter of the test mini-pipe was 0.5, 0.25 and 0.12 mm, respectively. The pressure drop data and the flow pattern were collected over 2.1 < Ug < 92.5 m/s for the superficial gas velocity and 0.03 < Ul < 10 m/s for the superficial liquid velocity. The experimental results show that the flow patterns were slug, churn, ring and annular flows; pure bubbly flow pattern was not observed in a range of the present experimental conditions. The two-phase friction multiplier data for D > 0.5 mm showed to be in good agreement with the conventional correlations. On the other hand, the two-phase friction multiplier data for D < 0.25 mm differed from the calculated values by the conventional correlations. Then, thickness of liquid film around a gas plug and size of gas core were estimated and the effect of frictional pressure drop on channel size was discussed through Knudsen Number of gas and instability on liquid-gas interface. The coefficients of sudden enlargement and sudden contraction in mini-pipes for the gas-water two-phase flow were modified from the present experimental results.


Author(s):  
Hiroyasu Ohtake ◽  
Masato Hagiwarai ◽  
Yasuo Koizumi

The frictional pressure drops of gas-liquid two-phase flow in mini-micro pipes and at vena contract and expansion were investigated experimentally and analytically. Pressure drops of straight pipe, sudden enlargement and sudden contraction of gas-liquid two-phase flow in mini-pipes were measured. Test liquid was water at room temperature; test gas was argon. The diameter of the test mini-pipe was 1.0 and 0.5 mm, respectively. Each test tube was connected at both ends to small tanks. The diameter of the small tank was 15 mm for 1.0 mm diameter of test tube and 5 mm for 0.5 mm diameter of test tube, respectively. Thus, the cross-sectional ratio of the contraction was about 1000; the ratio of the enlargement was about 0.001. The pressure drop data were collected over 3.0 < UG < 130 m/s for the superficial gas velocity and 0.02 < UL < 6.0 m/s for the superficial liquid velocity. The present experimental results of sudden contraction pressure loss factor Kc and sudden enlargement pressure loss factor Ke of single-phase liquid flow in mini-pipes differed from the conventional values, Kc = 0.5 and Ke = 1.0. The calculated results by using a commercial code, STAR-CD, agreed with the present experimental results for mini-pipes. Assuming to homogenous flow and incompressible flow, sudden contraction pressure loss, sudden enlargement pressure loss and their factors Kc, Ke for gas-liquid two-phase flow were estimated by using momentum equation and energy equation. The contraction pressure losses by Hewitt’s correlation for conventional pipes were similar to the present experimental results of the contraction for mini-circular pipe. Collier’s correlation of the enlargement pressure loss for conventional pipes underpredicted the present experimental results of the enlargement for mini-tube. Based on the present experimental results, new correlations were obtained for the enlargement and the contraction pressure losses in mini-channel.


Volume 3 ◽  
2004 ◽  
Author(s):  
Hideo Ide ◽  
Tohru Fukano

Experiments on the horizontal and the vertical upward gas-liquid two-phase flows were done to clarify the flow phenomena in a flat capillary rectangular channel. The flow patterns, the passing frequency and the velocity of liquid lumps, the holdup and the frictional pressure drop in two-phase flow were investigated. The dimension of the channel used was 9.9 mm × 1.1 mm. The orientations of the channel were with the wide side vertical and the wide side horizontal. The differences between the flow phenomena in such orientations were investigated. The effects of the orientation of the duct, the aspect ratio of the cross section of the channel, superficial gas velocity and superficial liquid velocity on those two-phase flow parameters were examined. The obtained data of the holdup and the frictional pressure drop could not be correlated well with those correlations which have been proposed so far. New correlations of holdup and frictional pressure drop for a flat capillary channel are proposed. The predictions by those correlations have sufficient accuracy for both the vertical and the horizontal flows.


Author(s):  
Yong-Seok Choi ◽  
Tae-Woo Lim ◽  
Sam-Sang You ◽  
Hwan-Seong Kim

In this paper, an experimental study on two-phase flow pressure drop of refrigerant FC-72 is carried out in a microchannel. The microchannel has a width and depth of 0.45 and 0.2 mm respectively, and comprises 15 parallel channels with a length of 60 mm. The experiment is conducted under the condition of mass flux of 100.3–458.0 kg/m2s and heat flux of 3.2–49.0 kW/m2. This study analyzed the pressure drop characteristics for two-phase flow by using a separated flow model. To predict the frictional pressure drop, two-phase frictional multiplier obtained from experiments is compared with the existing correlations. The experimental results show that two-phase frictional multipliers rely heavily on the vapor quality. Fractional pressure drop increases as the vapor quality increases. However, the rate of increase in the high vapor quality region decreases as the vapor quality increases. Based on pressure drop characteristics obtained from the experiments, a new correlation is proposed to predict the frictional pressure drop. Two-phase multiplier is modified with the dimensionless parameters such as Reynolds number, Weber number, and Martinelli parameter. The newly developed correlation predicts the experimental results well within a mean absolute error of 8.0%.


Author(s):  
Licheng Sun ◽  
Kaichiro Mishima

2092 data of two-phase flow pressure drop were collected from 18 published papers of which the working fluids include R123, R134a, R22, R236ea, R245fa, R404a, R407C, R410a, R507, CO2, water and air. The hydraulic diameter ranges from 0.506 to 12mm; Relo from 10 to 37000, and Rego from 3 to 4×105. 11 correlations and models for calculating the two-phase frictional pressure drop were evaluated based upon these data. The results show that the accuracy of the Lockhart-Martinelli method, Mishima and Hibiki correlation, Zhang and Mishima correlation and Lee and Mudawar correalion in the laminar region is very close to each other, while the Muller-Steinhagen and Heck correlation is the best among the evaluated correlations in the turbulent region. A modified Chisholm correlation was proposed, which is better than all of the evaluated correlations in the turbulent region and its mean relative error is about 29%. For refrigerants only, the new correlation and Muller-Steinhagen and Heck correlation are very close to each other and give better agreement than the other evaluated correlations.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
G. Ribatskia ◽  
J. R. Thome

This paper presents a state-of-the-art review of the hydrodynamic aspects of two-phase flow across horizontal tube bundles. The review covers studies related to the evaluation of void fraction, two-phase flow behaviors and pressure drops on the shell side of staggered and in-line tube bundles for upward, downward and side-to-side flows. This study of the literature critically describes the proposed flow pattern maps and semi-empirical correlations for predicting void fraction and frictional pressure drop. These predicting methods are generally based on experimental results for adiabatic air-water flows. A limited number of experimental studies with R-11 and R-113 were also carried out in the past. The review shows noticeable discrepancies among the available prediction methods. Finally, this study suggests that further research focusing on the development of representative databanks and new prediction methods is still necessary.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094088
Author(s):  
Yi Ma ◽  
Minjia Zhang ◽  
Huashuai Luo

A numerical and experimental study was carried out to investigate the two-phase flow fields of the typical three valves used in the multiphase pumps. Under the gas volume fraction conditions in the range of 0%–100%, the three-dimensional steady and dynamic two-phase flow characteristics, pressure drops, and their multipliers of the ball valve, cone valve, and disk valve were studied, respectively, using Eulerian–Eulerian approach and dynamic grid technique in ANSYS FLUENT. In addition, a valve test system was built to verify the simulated results by the particle image velocimetry and pressure test. The flow coefficient CQ (about 0.989) of the disk valve is greater than those of the other valves (about 0.864) under the steady flow with a high Reynolds number. The two-phase pressure drops of the three valves fluctuate in different forms with the vibration of the cores during the dynamic opening. The two-phase multipliers of the fully opened ball valve are consistent with the predicted values of the Morris model, while those of the cone valve and disk valve had the smallest differences with the predicted values of the Chisholm model. Through the comprehensive analysis of the flow performance, pressure drop, and dynamic stability of the three pump valves, the disk valve is found to be more suitable for the multiphase pumps due to its smaller axial space, resistance loss, and better flow capacity.


2004 ◽  
Vol 126 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Peter M.-Y. Chung ◽  
Masahiro Kawaji ◽  
Akimaro Kawahara ◽  
Yuichi Shibata

An adiabatic experiment was conducted to investigate the effect of channel geometry on gas-liquid two-phase flow characteristics in horizontal microchannels. A water-nitrogen gas mixture was pumped through a 96 μm square microchannel and the resulting flow pattern, void fraction and frictional pressure drop data were compared with those previously reported by the authors for a 100 μm circular microchannel. The pressure drop data were best estimated using a separated-flow model and the void fraction increased non-linearly with volumetric quality, regardless of the channel shape. However, the flow maps exhibited transition boundaries that were shifted depending on the channel shape.


Author(s):  
Florencio Sanchez-Silva ◽  
Ignacio Carvajal-Mariscal ◽  
Rene Tolentino-Eslava

The comparison of experimental data and results obtained from four global models — homogeneous, Dukler, Martinelli and Chisholm, used to evaluate the two-phase flow pressure drop in circular 90° horizontal elbows — is presented in this paper. An experimental investigation was carried out using three galvanized steel 90° horizontal elbows (E1, E2, E3) with internal diameters of 26.5, 41.2 and 52.5 mm, and curvature radii of 194.0, 264.0 and 326.6 mm, respectively. According to the experimental results, the model proposed by Chisholm best fitted them, presenting for each elbow an average error of E1 = 18.27%, E2 = 28.40% and E3 = 42.10%. Based on experimental results two correlations were developed. The first one is the classical Chisholm model modified to obtain better results in a wider range of conditions; it was adjusted by a dimensionless relationship which is a function of the homogeneous volumetric fraction and the Dean number. As a result, the predictions using modified Chisholm model were improved presenting an average error of 8.66%. The second developed correlation is based on the entire two-phase mass flow taken as liquid and adjusted by the homogeneous volumetric fraction ratio. The results show that this last correlation is easier and accurate than the adjusted Chisholm model, presenting an average error of 7.75%. Therefore, this correlation is recommended for two-phase pressure drop evaluation in horizontal elbows.


Sign in / Sign up

Export Citation Format

Share Document