transfer flow
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 103)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
Djedid Taloub ◽  
Adelkarim Bouras ◽  
Zied Driss

During this first paper, numerical research from the natural convection of steady-state laminar heat transfer into a horizontal ring within a heated internal elliptical surface and a cold external square surface is presented. A Cu - water nanofluid, traverses this annular space. For different thermal Rayleigh numbers varying from 103 to 2.5x105 and different volume fractions from the nanoparticles. The arrangement from equations directing the problem was resolved numerically with the Fluent computational language founded on the finite volume approach. Based approaching the Boussinesq approach. The interior and exterior surfaces from the two cylinders are maintained at a fixed temperature. We investigated the impacts of various thermal Rayleigh numbers, the volume fraction from the nanoparticles, and the effect of the eccentricity of the internal cylinder on the natural convection. The results are shown within the figure of isocurrents, isotherms, and mean and local Nusselt numbers. The objective of this investigation is to examine the impact of different parameters on the heat transfer flow.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Md. Hasanuzzaman ◽  
Md. Abul Kalam Azad ◽  
Md. Mosharrof Hossain

AbstractIn this paper, the effects of Dufour and thermal diffusion and on unsteady MHD (magnetohydrodynamic) free convection and mass transfer flow through an infinite vertical permeable sheet have been investigated numerically. The non-dimensional governing equations are solved numerically by using the superposition method with the help of “Tec plot” software. The numerical solution regarding the non-dimensional velocity, temperature, and concentration variables against the non-dimensional coordinate variable has been carried out for various values of pertinent numbers and parameters like the suction parameter $$\left( {v_{0} } \right)$$ v 0 , Prandtl number $$\left( {P_{r} } \right)$$ P r , magnetic parameter $$\left( M \right)$$ M , Dufour number $$\left( {D_{f} } \right)$$ D f , Soret number $$\left( {S_{0} } \right)$$ S 0 , Schmidt number $$\left( {S_{c} } \right)$$ S c , and for constant values of modified local Grashof number $$\left( {G_{{\text{m}}} } \right)$$ G m and local Grashof number $$\left( {G_{r} } \right)$$ G r .The velocity field decreases for increasing the suction parameter which is focusing on the common fact that the usual suction parameter stabilizing the effect on the boundary layer growth. The thermal boundary layer thickness becomes thinner for rising values of the Dufour and Soret numbers. The skin friction enhances for uplifting values of Soret number and Dufour number but reduces for moving suction parameter, Magnetic force number, Prandtl number, and Schmidt number. The heat transfer rate increases for increasing the suction parameter, Dufour number, Prandtl number, and Soret number. The mass transfer rate increases for enhancing the values of suction parameter, Magnetic force number, Soret number, and Prandtl number but decreases for Dufour number and Schmidt number.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Noor Saeed Khan ◽  
Poom Kumam

AbstractThe study concerns with the mechanical characteristics of heat and mass transfer flow of a second grade nanofluid as well as gyrotatic microorganism motion past a thin needle with dipole effect, entropy generation, thermal radiation, Arrhenius activation energy and binar chemical reaction. The governing equations and boundary conditions are simplified by the use of suitable similarity transformations. Homotopy analysis method is implemented to obtain the series solution of non-linear ordinary differential equations. Physical behaviors of heat and mass transfer flow with gyrotatic microorganisms and entropy generation are investigated through the embedded parameters. The nanofluid velocity is enhanced for higher values of the ferromagnetic parameter, local Grashof number, bioconvection Rayleigh number and radiation parameter. The Reynolds number, radiation parameter and Eckert number decrease the nanofluid temperature. The entropy generation is increased with the enhancement of radiation parameter, Eckert number, Lewis number, temperature difference parameter, dimensionless constant parameter, Curie temperature, Prandtl number and concentration difference parameter.


Author(s):  
Farhan Ahmed

During this study, we have investigated the effect of magnetic field on heat transfer flow of an electrically conducting magneto-hydrodynamic, ( MHD) nano fluid through annular sector duct. The problem is formulated under the assumption of fully developed flow by ignoring the deviation of velocity components in the axial direction only; and simulated with the help of semi implicit method for pressure linked equations revised, ( SIMPLER). The effect of Hartman number, M, on fully developed forced convection flow has been determined for different values of Copper nano particles contribution in base fluid, ϕ, apex angle, β and ratio of radii, Ȓ. With increase in the value of M, a prominent effect has been observed on friction factor, fRe. Furthermore, the influence of nano particles contribution on friction factor, fRe, has been dominated, when we increase the value of M.


2021 ◽  
Vol 60 (4) ◽  
pp. 3593-3604
Author(s):  
Muhammad Danish Ikram ◽  
Muhammad Imran Asjad ◽  
Ali Akgül ◽  
Dumitru Baleanu

Sign in / Sign up

Export Citation Format

Share Document