Nucleate Pool Boiling: The Dominant Bubble Heat Transfer Mechanisms

Author(s):  
Jungho Kim

Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms.

2000 ◽  
Author(s):  
Jungho Kim ◽  
Fatih Demiray ◽  
Nagaraja Yaddanapudi

Abstract A study of single bubbles growing on a microscale heater array kept at nominally constant temperature was performed. The behavior of bubbles nucleating at a single site at two different temperatures (22.5 K and 27.5 K superheat) is compared for saturated pool boiling of FC-72 at 1 atm. It is concluded that energy is transferred from the surface through similar heat transfer mechanisms at both superheats. Microlayer evaporation was observed to play a minor role in the overall heat transfer, with microconvection/transient conduction being the dominant mechanism. Evaluation of various heat transfer models are made.


2021 ◽  
pp. 69-69
Author(s):  
Andrijana Stojanovic ◽  
Srdjan Belosevic ◽  
Nenad Crnomarkovic ◽  
Ivan Tomanovic ◽  
Aleksandar Milicevic

Understanding nucleate pool boiling heat transfer and, in particular the accurate prediction of conditions that can lead to critical heat flux, is of the utmost importance in many industries. Due to the safety issues related to the nuclear power plants, and for the efficient operation of many heat transfer units including fossil fuel boilers, fusion reactors, electronic chips, etc., it is important to understand this kind of heat transfer. In this paper, a comprehensive review of analytical and numerical work on nucleate pool boiling heat transfer is presented. In order to understand this phenomenon, existing studies on boiling heat transfer coefficient and boiling heat flux are also discussed, as well as characteristics of boiling phenomena such as bubble departure diameter, bubble departure frequency, active nucleation site density, bubble waiting and growth period and their impact on pool boiling heat transfer.


Author(s):  
Payam Delgoshaei ◽  
Jungho Kim

Measurements of space and time resolved subcooled pool boiling of pentane in earth gravity environments were made using a microscale heater array. Data from individual heater elements in the array were synchronized with bottom and side view images from two highspeed cameras. The bubble growth was primarily due to energy transfer from the superheated liquid layer. Transient conduction and/or microconvection was found to be the dominant heat transfer mechanism. A composite model consisting of microlayer evaporation and transient conduction was developed and compared with the experimental data.


1998 ◽  
Vol 29 (1-3) ◽  
pp. 196-207
Author(s):  
Haruhiko Ohta ◽  
Koichi Inoue ◽  
Suguru Yoshida ◽  
Tomoji S. Morita

Sign in / Sign up

Export Citation Format

Share Document