Applications of Artificial Neural Network for the Prediction of Pool Boiling Curves

Author(s):  
Guanghui Su ◽  
K. Fukuda ◽  
K. Morita

Artificial neural network (ANN) has the advantage that the best-fit correlations of experimental data will no longer be necessary for predicting unknowns from the known parameters. The ANN was applied to predict the pool boiling curves in this paper. The database of experimentel data presented by Berenson, Dhuga et al., and Bui and Dhir etc. were used in the analysis. The database is subdivided in two subsets. The first subset is used to train the network and the second one is used to test the network after the training process. The input parameters of the ANN are: wall superheat ΔTw, surface roughness, steady/transient heating/transient cooling, subcooling, Surface inclination and pressure. The output parameter is heat flux q. The proposed methodology allows us to achieve the accuracy that satisfies the user’s convergence criterion and it is suitable for pool boiling curve data processing.

2014 ◽  
Vol 17 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Gurjeet Singh ◽  
Rabindra K. Panda ◽  
Marc Lamers

The reported study was undertaken in a small agricultural watershed, namely, Kapgari in Eastern India having a drainage area of 973 ha. The watershed was subdivided into three sub-watersheds on the basis of drainage network and land topography. An attempt was made to relate the continuously monitored runoff data from the sub-watersheds and the whole-watershed with the rainfall and temperature data using the artificial neural network (ANN) technique. The reported study also evaluated the bias in the prediction of daily runoff with shorter length of training data set using different resampling techniques with the ANN modeling. A 10-fold cross-validation (CV) technique was used to find the optimum number of hidden neurons in the hidden layer and to avoid neural network over-fitting during the training process for shorter length of data. The results illustrated that the ANN models developed with shorter length of training data set avoid neural network over-fitting during the training process, using a 10-fold CV method. Moreover, the biasness was investigated using the bootstrap resampling technique based ANN (BANN) for short length of training data set. In comparison with the 10-fold CV technique, the BANN is more efficient in solving the problems of the over-fitting and under-fitting during training of models for shorter length of data set.


Author(s):  
YANGPO SONG ◽  
XIAOQI PENG

To improve the modeling performance — such as accuracy and robustness — of artificial neural network (ANN), a new combined ANN and corresponding optimal modeling method are proposed in this paper. The combined ANN consists of two parallel sub-networks, and methods such as "early stopping" and "data resampling" are jointly used in training process to reduce the sensitivity of the modeling performance to its structure. To achieve better performance, the structure of combined ANN is proposed to be adjusted dynamically according to the information of expectation error and real error. Simulation experimental results verify that the optimal modeling method using combined ANN can achieve much better performance than the traditional method.


Author(s):  
Lady Silk Moonlight ◽  
Fiqqih Faizah ◽  
Yuyun Suprapto ◽  
Nyaris Pambudiyatno

Background: Human face is a biometric feature. Artificial Intelligence (AI) called Artificial Neural Network (ANN) can be used in recognising such a biometric feature. In ANN, the learning process is divided into two: supervised and unsupervised learning. In supervised learning, a common method used is Backpropagation, while in the unsupervised learning, a common one is Kohonen Self Organizing Map (KSOM). However, the application of Backpropagation and KSOM need to be adjusted to improve the performance.Objective: In this study, Backpropagation and KSOM algorithms are rewritten to suit face image recognition, applied and compared to determine the effectiveness of each algorithm in solving face image recognition.Methods: In this study, the methods used and compared in the case of face image recognition are Backpropagation dan Kohonen Self Organizing Map (KSOM) Artificial Neural Network (ANN).Results: The smallest False Acceptance Rate (FAR) value of Backpropagation is 28%, and KSOM is 36%, out of 50 unregistered face images tested. While the smallest False Rejection Rate (FRR) value of Backpropagation is 22%, and KSOM is 30%, out of 50 registered face images. The fastest time for the training process using the backpropagation method is 7.14 seconds, and the fastest time for recognition is 0.71 seconds. While the fastest time for the training process using the KSOM method is 5.35 seconds, and the fastest time for recognition is 0.50 seconds.Conclusion: Backpropagation method is better in recognising face images than KSOM method, but the training process and the recognition process by KSOM method are faster than Backpropagation method due to the hidden layers. Keywords: Artificial Neural Network (ANN), Backpropagation, Kohonen Self Organizing Map (KSOM), Supervised learning, Unsupervised learning 


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document