Dynamic Sensitivity Analysis of Thermal-Mechanical Deformation of a CANDU Fuel Channel

Author(s):  
J. C. Luxat

In a limiting critical break loss of coolant accident in a CANDU reactor significant degradation of heat transfer from the fuel can occur. As a result of the subsequent increase in fuel temperature it is possible that the pressure tube undergoes heat up at intermediate pressure during blowdown. This can result in ballooning deformation of the pressure tube into contact with its calandria tube. It is required that fuel channels not fail as a consequence of the thermal mechanical deformation of the pressure tube and calandria tube in such events. Dynamic sensitivity functions are derived as analytical partial differential equations derived from the equations used to model the time-dependent behavior of physical systems. The dynamic sensitivity functions can be used to propagate uncertainties using a time-dependent perturbation approach in which the variations in a set of output variables, with respect to perturbations of the input parameters, are evaluated about reference response trajectories of the input parameters and associated output variables. The dynamic sensitivity method is described in this paper and results are presented for the pressure tube heatup phase of a LOCA. These results show the importance of all key parameters with respect to specified safety evaluation criteria. The dynamic sensitivity method is applied in a probabilistic uncertainty analysis to evaluate the probability of a pressure tube experiencing creep strain deformation to contact its calandria tube during the early stages of a LOCA.

Author(s):  
A. M. Ette ◽  
I. U. Udo-Akpan ◽  
J. U. Chukwuchekwa ◽  
A. C. Osuji ◽  
M. F. Noah

This investigation is concerned with analytically determining the dynamic buckling load of an imperfect cubic-quintic nonlinear elastic model structure struck by an explicitly time-dependent but slowly varying load that is continuously decreasing in magnitude. A multi-timing regular perturbation technique in asymptotic procedures is utilized to analyze the problem. The result shows that the dynamic buckling load depends, among other things, on the first derivative of the load function evaluated at the initial time. In the long run, the dynamic buckling load is related to its static equivalent, and that relationship is independent of the imperfection parameter. Thus, once any of the two buckling loads is known, then the other can easily be evaluated using this relationship.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Zissimos P. Mourelatos ◽  
Monica Majcher ◽  
Vasileios Geroulas

The field of random vibrations of large-scale systems with millions of degrees-of-freedom (DOF) is of significant importance in many engineering disciplines. In this paper, we propose a method to calculate the time-dependent reliability of linear vibratory systems with random parameters excited by nonstationary Gaussian processes. The approach combines principles of random vibrations, the total probability theorem, and recent advances in time-dependent reliability using an integral equation involving the upcrossing and joint upcrossing rates. A space-filling design, such as optimal symmetric Latin hypercube (OSLH) sampling, is first used to sample the input parameter space. For each design point, the corresponding conditional time-dependent probability of failure is calculated efficiently using random vibrations principles to obtain the statistics of the output process and an efficient numerical estimation of the upcrossing and joint upcrossing rates. A time-dependent metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure. The proposed method is demonstrated using a vibratory beam example.


2018 ◽  
Vol 5 (1) ◽  
pp. 17-00442-17-00442 ◽  
Author(s):  
Masafumi OKADA ◽  
Shota ONIWA ◽  
Wataru HIJIKATA

Sign in / Sign up

Export Citation Format

Share Document