Numerical Modeling of Stationary, Dynamic Pebbles and Gas Flows in a Pebble Bed Reactor

Author(s):  
Xiang Zhao ◽  
Trent Montgomery ◽  
Sijun Zhang

This paper presents a review on the research activities conducted at AAMU (Alabama A&M University) in the last five years. The researchers in College of Engineering, Technology and Physical Sciences of AAMU have been receiving financial support from the U.S. Department of Energy under Massie Chair Excellence Program in Nuclear Engineering from 2008. The main objectives of this project were to improve the capability of understanding the static, dynamic behavior of pebbles and gas flows/heat transfer in a pebble bed reactor (PBR), which is the key to the design, optimization and safe operation of the reactors.

2004 ◽  
Vol 126 (01) ◽  
pp. 27-29
Author(s):  
Jeffrey Winters

The US Department of Energy has commissioned research into advanced gas-cooled designs that would employ extreme heat to generate hydrogen for use in fuel cell-powered vehicles, and such designs are being considered as part of the Generation IV Nuclear Energy Systems Initiative. Another design that has received much attention is known as the pebble bed reactor. In this scheme, coated fuel particles are formed into billiard ball-size spheres, which are stacked in the containment vessel. Gas flows through the gaps between the stacked balls to convey the heat to a heat exchanger. The pebble-bed design has been tested in Germany, and South Africa has an active program. The Oak Ridge National Laboratory team has been investigating using non-carbon coatings that would wave by fast neutrons. Materials such as zirconium nitride have been looked at with the goal of creating an easily dissolved ceramic that could be used in fast-breeder reactors.


Kerntechnik ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. 643-647 ◽  
Author(s):  
T. Setiadipura ◽  
D. Irwanto ◽  
Zuhair

2014 ◽  
Vol 270 ◽  
pp. 295-301 ◽  
Author(s):  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
Shengyao Jiang

1988 ◽  
Vol 110 (4) ◽  
pp. 670-676
Author(s):  
R. R. Judkins ◽  
R. A. Bradley

The Advanced Research and Technology Development (AR&TD) Fossil Energy Materials Program is a multifaceted materials research and development program sponsored by the Office of Fossil Energy of the U.S. Department of Energy. The program is administered by the Office of Technical Coordination. In 1979, the Office of Fossil Energy assigned responsibilities for this program to the DOE Oak Ridge Operations Office (ORO) as the lead field office and Oak Ridge National Laboratory (ORNL) as the lead national laboratory. Technical activities on the program are divided into three research thrust areas: structural ceramic composites, alloy development and mechanical properties, and corrosion and erosion of alloys. In addition, assessments and technology transfer are included in a fourth thrust area. This paper provides information on the structure of the program and summarizes some of the major research activities.


Author(s):  
Rainer Moormann

The AVR pebble bed reactor (46 MWth) was operated 1967–1988 at coolant outlet temperatures up to 990°C. Also because of a lack of other experience the AVR operation is a basis for future HTRs. This paper deals with insufficiently published unresolved safety problems of AVR and of pebble bed HTRs. The AVR primary circuit is heavily contaminated with dust bound and mobile metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory. A re-evaluation of the AVR contamination is performed in order to quantify consequences for future HTRs: The AVR contamination was mainly caused by inadmissible high core temperatures, and not — as presumed in the past — by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot be equipped with instruments. The maximum core temperatures were more than 200 K higher than precalculated. Further, azimuthal temperature differences at the active core margin were observed, as unpredictable hot gas currents with temperatures > 1100°C. Despite of remarkable effort these problems are not yet understood. Having the black box character of the AVR core in mind it remains uncertain whether convincing explanations can be found without major experimental R&D. After detection of the inadmissible core temperatures, the AVR hot gas temperatures were strongly reduced for safety reasons. Metallic fission products diffuse in fuel kernel, coatings and graphite and their break through takes place in long term normal operation, if fission product specific temperature limits are exceeded. This is an unresolved weak point of HTRs in contrast to other reactors and is particularly problematic in pebble bed systems with their large dust content. Another disadvantage, responsible for the pronounced AVR contamination, lies in the fact that activity released from fuel elements is distributed in HTRs all over the coolant circuit surfaces and on graphitic dust and accumulates there. Consequences of AVR experience on future reactors are discussed. As long as pebble bed intrinsic reasons for the high AVR temperatures cannot be excluded they have to be conservatively considered in operation and design basis accidents. For an HTR of 400 MWth, 900°C hot gas temperature, modern fuel and 32 fpy the contaminations are expected to approach at least the same order as in AVR end of life. This creates major problems in design basis accidents, for maintenance and dismantling. Application of German dose criteria on advanced pebble bed reactors leads to the conclusion that a pebble bed HTR needs a gas tight containment even if inadmissible high temperatures as observed in AVR are not considered. However, a gas tight containment does not diminish the consequences of the primary circuit contamination on maintenance and dismantling. Thus complementary measures are discussed. A reduction of demands on future reactors (hot gas temperatures, fuel burn-up) is one option; another one is an elaborate R&D program for solution of unresolved problems related to operation and design basis accidents. These problems are listed in the paper.


2013 ◽  
Vol 05 (04) ◽  
pp. 510-516
Author(s):  
Hongbing Liu ◽  
Peng Shen ◽  
Dong Du ◽  
Xin Wang ◽  
Haiquan Zhang

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Jingyu Zhang ◽  
Fu Li ◽  
Yuliang Sun

The pebble-bed reactor HTR-PM is being built in China and is planned to be critical in one or two years. At present, one emphasis of engineering design is to determine the fuel management scheme of the initial core and running-in phase. There are many possible schemes, and many factors need to be considered in the process of scheme evaluation and analysis. Based on the experience from the constructed or designed pebble-bed reactors, the fuel enrichment and the ratio of fuel spheres to graphite spheres are important. In this paper, some relevant physical considerations of the initial core and running-in phase of HTR-PM are given. Then a typical scheme of the initial core and running-in phase is proposed and simulated with VSOP code, and some key physical parameters, such as the maximum power per fuel sphere, the maximum fuel temperature, the refueling rate, and the discharge burnup, are calculated. Results of the physical parameters all satisfy the relevant design requirements, which means the proposed scheme is safe and reliable and can provide support for the fuel management of HTR-PM in the future.


2015 ◽  
Vol 80 ◽  
pp. 52-61 ◽  
Author(s):  
Xiang Zhao ◽  
Trent Montgomery ◽  
Sijun Zhang

2005 ◽  
Vol 149 (2) ◽  
pp. 131-137 ◽  
Author(s):  
Üner Çolak ◽  
Volkan Seker

Sign in / Sign up

Export Citation Format

Share Document