Evolution of Crystal Orientations in Plastically Deformed Steels: Role of Constitutive Models Used in Finite Element Simulations

Author(s):  
Samir El Shawish ◽  
Leon Cizelj ◽  
Igor Simonovski

Stainless steel is a commonly used material in safety-important components of nuclear power plants. In order to study degradation mechanisms in stainless steels, like crack initiation and propagation, it is important to characterize the degree of plastic strain on microstructural level. One way to estimate local plastic strain is by measuring local crystal orientations of the scanned surfaces: the electron backscatter diffraction (EBSD) measurements on stainless steel revealed a strong correlation between the spread of crystal orientations within the individual grains and the imposed macroscopic plastic strain. Similar behavior was also reproduced by finite element simulations where stainless steel was modeled by an anisotropic elasto-plastic constitutive model. In that model the anisotropic Hill’s plasticity function for yield criteria was used and calibrated against the EBSD measurements and macroscopic tensile curve. In this work the Hill’s phenomenological model is upgraded to a more sophisticated crystal plasticity model where plastic deformation is assumed to be a sum of crystalline slips in all activated slip systems. The hardening laws of Peirce, Asaro and Needleman and of Bassani and Wu are applied in crystal plasticity theory and implemented numerically within the user subroutine in ABAQUS. The corresponding material parameters are taken from literature for 316L stainless steel. Finite element simulations are conducted on the analytical Voronoi tessellation with 100 grains and initial random crystallographic orientations. From the simulations, crystal and modified crystal deformation parameters are calculated, which quantify mean and median spread of crystal orientations within individual grains with respect to central grain orientation. The results are compared to EBSD measurements and previous simulations performed with Hill’s plasticity model.

2014 ◽  
Vol 553 ◽  
pp. 22-27
Author(s):  
Ling Li ◽  
Lu Ming Shen ◽  
Gwénaëlle Proust

A texture-based representative volume element (TBRVE) model is developed for the three-dimensional crystal plasticity (CP) finite element simulations of the Bauschinger effect (BE) of polycrystalline aluminium alloy 7075 (AA7075). In the simulations, the grain morphology is created using the Voronoi tessellation method with the material texture systematically discretised from experiment. A modified CP constitutive model, which takes into account the backstress, is used to simulate the BE during cyclic loading. The model parameters are calibrated using the first cycle stress-strain curve and used to predict the mechanical response to the cyclic saturation of AA7075. The results indicate that the proposed TBRVE CP finite element model can effectively capture the BE at the grain level.


Sign in / Sign up

Export Citation Format

Share Document