nano indentation
Recently Published Documents


TOTAL DOCUMENTS

772
(FIVE YEARS 144)

H-INDEX

44
(FIVE YEARS 7)

2022 ◽  
Vol 1048 ◽  
pp. 254-260
Author(s):  
Kaushik V. Prasad ◽  
H. Adarsha

Al2O3, Al2O3-10%CeO2 and Al2O3 – 20% CeO2 coatings were deposited on Mg AZ91 alloy by High Velocity Oxy Fuel (HVOF) process. The microstructure of deposited coatings was characterized by scanning electron microscopy and x-ray diffraction. Nano-indentation tests were performed on deposited coatings to determine its load bearing capacity and elastic recovery. Al2O3 coatings exhibited coarse grain structure with porous sites. While addition of CeO2 promoted grain refinement in the coatings. A load of 100mN was applied on all the samples for nano-indentation test. Coating with 20%CeO2 exhibited maximum load bearing capacity of 98.7mN with elastic recovery displacement of 1000 nm.


2021 ◽  
Author(s):  
Alex Evilevitch ◽  
Udom Sae-Ueng

Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize energy of self-assembly; ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus type 1 (HSV-1) as a prototype of human herpesviruses, we demonstrate that this mechanical capsid maturation is mainly facilitated through capsid-binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggest the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines, where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. IMPORTANCE Minor capsid protein UL25 plays a critical role in mechanical maturation of HSV-1 capsid during virus assembly, required for stable DNA packaging. We modulate UL25-capsid interactions by genetically deleting different UL25 regions and quantify the effect on mechanical capsid stability using an atomic force microscopy (AFM) nano-indentation approach. This approach reveals how UL25 regions reinforce the herpesvirus capsid in order to stably package and retain pressurized DNA. Our data suggests a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.


2021 ◽  
Author(s):  
Xintong Zhu ◽  
Ranjan Rajoo ◽  
Ramesh Rao Nistala ◽  
Kai Chong Chan ◽  
Zhi Qiang Mo
Keyword(s):  

2021 ◽  
Author(s):  
Tao Zheng ◽  
Baosheng Xu ◽  
Shun Wang ◽  
Donghui Guo ◽  
Feifei Zhou ◽  
...  

Abstract In this study, nanostructured Yb2SiO5 coatings were prepared by atmospheric plasma spraying (APS) using nanostructured Yb2SiO5 feedstocks. Conventional Yb2SiO5 coatings were selected for comparison. The microstructure and nanomechanical property of the nanostructured and conventional Yb2SiO5 coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nano-indentation. Results indicate that the surface of the nanostructured Yb2SiO5 coatings is uniform and denser than the conventional Yb2SiO5 coatings. In addition, Weibull distribution analysis shows that the molten state of the nanostructured Yb2SiO5 coatings present a mono-modal distribution, whereas the conventional Yb2SiO5 coatings show a bi-modal distribution, i.e. molten and unmelted zones. The nanostructured Yb2SiO5 coatings have a higher elastic modulus than the conventional Yb2SiO5 coatings (167.37077 ± 16.88070 GPa versus 153.72856 ± 19.69907 GPa), reflecting their high density.


2021 ◽  
Author(s):  
Maciej Marian Spychalski ◽  
E Fortuna-Zalesna ◽  
Joanna Zdunek ◽  
Marek Rubel ◽  
Anna Widdowson ◽  
...  

Abstract Tungsten Langmuir probes retrieved from the JET tokamak with the ITER-Like Wall (JET-ILW) after the second ILW campaign were examined by nano-indentation, microscopy and X-ray diffraction in order to determine changes in mechanical properties and phase composition. Not-exposed probe served as a reference material. Two regions were studied: (i) recrystallized region below the tip and, (ii) the lower probe structure, called “support structure”. A large difference between the hardness in the tip and the other region has been found: 5 GPa versus 15 GPa, respectively. The measured values of the Young’s modulus in both zones of exposed probe are at the same level of 260 GPa. From the force-displacement curves, it can be concluded that the material in the tip has a smaller range of elastic deformations compared to that characteristic for the support structure. The values obtained for the material in its initial state are consistent with the available literature data for tungsten. With X-ray diffraction and microscopy only tungsten has been detected in the probe tip. It remained clean and free from impurities and undesirable compounds, which could have a negative impact on the probes electrical properties.


Author(s):  
Fei Qin ◽  
Shuai Zhao ◽  
Yanwei Dai ◽  
Lingyun Liu ◽  
Tong An ◽  
...  

Abstract Thermo-mechanical reliability assessment for sintered silver is a crucial issue as sintered silver is a promising candidate of die-attachment materials for power devices. In this paper, the nano-indentation tests are performed for sintered silver in typical die-attach interconnection under different thermal cycles. Based on thermal cycling test, the Young's modulus and hardness of sintered silver layer have been presented. It is found that the Young's modulus and hardness of sintered silver layer changes slightly although the microstructure of sintered silver also presents some variations. The stress and strain curves for different thermal cycling tests for sintered silver based on reverse analysis of nano-indentation are also given. The results show that the elastoplastic constitutive equations change significantly after thermal cycling tests, and the yielding stress decreases remarkably after 70 thermal cycles. The experimental investigation also show that the cracking behaviors of sintered silver depends on its geometry characteristics, which implies that the possible optimization of sintered silver layer could enhance its thermo-mechanical performance.


Author(s):  
SANDEEP MALIK ◽  
VINEET KUMAR

In this work, the experimental investigation of the surface integrity and biomechanical properties of the superficial layer obtained by wire electrical discharge machining (W-EDM) of Ti-6Al-4V alloy for biomedical application has been carried out. The surface morphology and elemental composition of the superficial layer have been investigated by field-emission scanning electron microscope (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) techniques. The micro-mechanical behavior in terms of compressive strength and surface hardness was studied using the micro-pillar and nano-indentation technique. The corrosion resistance and in vitro bioactivity have been investigated using electrochemical and immersion test. Morphological analysis showed that surface morphology and superficial layer thickness were affected by peak current, pulse-duration and pulse-interval. The niobium (Nb)-rich layer was developed in superficial layer zone. The low peak current (3–6[Formula: see text]A), low pulse-duration (5–10[Formula: see text][Formula: see text]s) and high pulse-interval ([Formula: see text]s) have been recommended for better surface morphology and thin superficial layer (ranging from 4–6[Formula: see text][Formula: see text]m) free from surface defects. The micro-pillar and nano-indentation results showed that the superficial layer comprised of a brittle structure that improved the mechanical properties of the layer and the compressive strength was measured to be 1198 MPa. The corrosion resistance analysis revealed that the Nb-rich layer in the superficial layer improved the corrosion resistance and bioactivity. Excellent apatite growth has been found in the W-EDM-processed zone. The W-EDM can be used for the biomedical industry as a potential surface engineering technique.


2021 ◽  
Vol 736 ◽  
pp. 138906
Author(s):  
Zenglu Song ◽  
Xiao Tang ◽  
Xiang Chen ◽  
Tao Fu ◽  
Huanping Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document