Finite Element Analysis for Rate-Independent Crystal Plasticity Model

2009 ◽  
Vol 33 (5) ◽  
pp. 447-454 ◽  
Author(s):  
Sang-Yul Ha ◽  
Ki-Tae Kim
2013 ◽  
Vol 684 ◽  
pp. 357-361 ◽  
Author(s):  
Jong Bong Kim ◽  
Jeong Whan Yoon

Without initial imperfection and damage evolution model, it is difficult to analyze the necking behavior by finite element analysis with continuum theory. Moreover, the results are greatly dependent on the size of the initial imperfection. In order to predict necking phenomenon without geometric imperfection, in this study, a crystal plasticity model was introduced in the 3-dimensional finite element analysis of tensile test. Grains were modeled by an octahedron and different orientations were allocated to each grain. Damage model was also used to predict the sudden drop of load carrying capacity after necking and to reflect the void nucleation and growth on the severely deformed region. Well-known Cockcroft-Latham damage model was used. Void nucleation, growth and coalescence behavior during necking were predicted reasonably.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Jeremy J. Dawkins ◽  
Richard W. Neu

The aim of this study is to evaluate a methodology for modeling the influence of crystallographic grain orientation in sliding contacts. The simulations of translating interfering cylindrical asperities, using finite element analysis, were conducted using two different plasticity models for copper: a conventional isotropic, homogeneous J2 plasticity model and a continuum crystal plasticity model. Using crystal plasticity, the dependence of crystallographic orientation on plastic deformation and energy dissipation can be determined. The relative trends predicted using crystal plasticity are consistent with experiments that show friction depends on crystallographic orientation when plastic deformation is one of the primary energy dissipation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document