Design of a Closely-Spaced Rod Bundle for a Reference Direct Numerical Simulation

Author(s):  
Afaque Shams ◽  
Tomasz Kwiatkowski

Detailed knowledge of a coolant flow in a fuel assembly of a reactor core has always been a major factor in the design of new nuclear systems. In this regard, traditionally adopted subchannel analysis codes cannot take into account local phenomena, which are quite essential. On the other hand, Computational Fluid Dynamic (CFD) is being recognized as a valuable research tool for thermal-hydraulics phenomenon in the fuel assembly geometries. Because of the high Reynolds number and geometric complexities, the practical CFD calculations are mostly limited to pragmatic Reynolds Averaged Navier-Stokes (RANS) type modelling approaches. A good prediction of the flow and heat transport inside the fuel rod bundle is a challenge for such RANS turbulence models and these models need to be validated. Although the measurement techniques are constantly getting improved, however, the CFD-grade experiments of flow mixing and heat transfer in the subchannel scale are often impossible or quite costly to be performed. In addition, lack of experimental databases makes it impossible to validate and/or calibrate the available RANS turbulence models for certain flow situations. In that context, Direct Numerical Simulation (DNS) can serve as a reference for model development and validation. The aim of this work is to design a numerical experiment in order to generate a high quality DNS database for a tight lattice bare rod bundle, which will serve as a reference for the validation purpose. The considered geometric design is based on the well-known Hooper experiment, which contains a bare rod bundle with pitch-to-diameter ratio of P/D = 1.107. Performing a DNS computation corresponding to the Hooper experiment requires a huge computational power. Hence, a wide range of unsteady RANS (URANS) study has been performed to scale-down the Reynolds number such that it is feasible for a DNS computation and at the same time it still preserves the main flow characteristics. In addition to the flow field, a parametric study for three different passive scalars is performed to take into account the heat transfer analysis. These passive scalars correspond to the Prandtl numbers of air, water and liquid metal fluids. The heat transfer of these three fluids has been studied in combination with two different boundary conditions at the walls, i.e. a constant temperature and a constant heat flux. Finally, the obtained URANS results are used to compute the Kolmogorov and Batchelor length scales in order to estimate the overall meshing requirements for the targeted DNS.

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Jonathan K. Lai ◽  
Giacomo Busco ◽  
Elia Merzari ◽  
Yassin A. Hassan

Abstract A direct numerical simulation (DNS) of bare rod bundles with a low pitch-to-diameter ratio is performed with heat transfer at different Prandtl numbers. Turbulence statistics for temperature and velocity as well as the turbulent budgets have been collected. High-fidelity simulations are performed with the spectral element method (SEM) using Nek5000, a highly scalable code. To pertain to industrial-related flows, a rod bundle model is based on Hooper and Wood's (Hooper, J. D., and Wood, D., 1984, “Fully Developed Rod Bundle Flow Over a Large Range of Reynolds Number,” Nucl. Eng. Des., 83(1), pp. 31–46) experimental setup. Both wall normalized velocity profile and turbulent kinetic energy are validated with a Reynolds number of 22,600. Kolmogorov length scales and time scales are calculated to be within the simulation's spatial–temporal resolution. Moreover, gap vortices and coherent structures are quantified by using Lambda2 vortex criterion, frequency analysis, and two-point correlation. Heat transfer statistics are discussed with a constant heat flux for six different Prandtl numbers ranging from 2 to 0.002. This range shows significantly different characteristics in temperature for both mean and variance. Mean temperature profiles in the subchannel center are very sensitive to the Prandtl number when it becomes small. It is also found that the location of the local maxima for the variance of temperature fluctuations becomes very sensitive at larger Prandtl numbers. The temperature frequency analysis reveals a shift to lower frequencies for low Prandtl numbers. The DNS results provided in this work will contribute as benchmark for the improvement and development of existing and new turbulent heat transfer models at different Prandtl number regimes.


Author(s):  
Alessandro Chiarini ◽  
Maurizio Quadrio

AbstractA direct numerical simulation (DNS) of the incompressible flow around a rectangular cylinder with chord-to-thickness ratio 5:1 (also known as the BARC benchmark) is presented. The work replicates the first DNS of this kind recently presented by Cimarelli et al. (J Wind Eng Ind Aerodyn 174:39–495, 2018), and intends to contribute to a solid numerical benchmark, albeit at a relatively low value of the Reynolds number. The study differentiates from previous work by using an in-house finite-differences solver instead of the finite-volumes toolbox OpenFOAM, and by employing finer spatial discretization and longer temporal average. The main features of the flow are described, and quantitative differences with the existing results are highlighted. The complete set of terms appearing in the budget equation for the components of the Reynolds stress tensor is provided for the first time. The different regions of the flow where production, redistribution and dissipation of each component take place are identified, and the anisotropic and inhomogeneous nature of the flow is discussed. Such information is valuable for the verification and fine-tuning of turbulence models in this complex separating and reattaching flow.


Author(s):  
Haomin Yuan ◽  
Elia Merzari

The flow characteristic of fluid at low Prandtl number is of continued interest in the nuclear industry because liquid metals are to be used in the next-generation nuclear power reactors. In this work we performed direct numerical simulation (DNS) for turbulent channel flow with fluid of low Prandtl number. The Prandtl number was set to 0.025, which is representative of the behavior of liquid metals. Constant heat flux was imposed on the walls to study heat transfer behavior, with different boundary conditions for temperature fluctuation. The bulk Reynolds number was set as high as 50,000, with a corresponding friction Reynolds number of 1,200, which is closer to the situation in a reactor or a heat exchanger than used in normally available databases. Budgets for turbulent variables were computed and compared with predictions from several RANS turbulence models. In particular, the Algebraic Heat Flux Model (AHFM) has been the focus of this comparison with DNS data. The comparisons highlight some shortcomings of AHFM along with potential improvements.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Luca Marocco ◽  
Andrea Franco

A turbulent convective flow of an incompressible fluid inside a staggered ribbed channel with high blockage at ReH ≈ 4200 is simulated with direct numerical simulation (DNS) and Reynolds-averaged Navier–Stokes (RANS) techniques. The DNS results provide the reference solution for comparison of the RANS turbulence models. The k–ε realizable, k–ω SST, and v2¯–f model are accurately analyzed for their strengths and weaknesses in predicting the flow and temperature field for this geometry. These three models have been extensively used in literature to simulate this configuration and boundary conditions but with discordant conclusions upon their performance. The v2¯–f model performs much better than the k–ε realizable while the k–ω SST model results to be inadequate.


Author(s):  
Yury V. Yudov

The direct numerical simulation, extended to boundary-fitted coordinate, has been carried out for a fully-developed turbulent flow thermal hydraulics in a triangular rod bundle. The rod bundle is premised to be an infinite array. The spacer grid effects are ignored. The purpose of this work is to verify DNS methodology to be applied for deriving coefficients for inter-subchannel turbulent mixing and heat transfer on a rod. These coefficients are incorporated in subchannel analysis codes. To demonstrate the validity of this methodology, numerical calculation was performed for the bundle with the pitch to diameter ratio 1.2, at friction Reynolds number of 600 and Prandtl number of 1. The results for the hydraulic parameters are compared with published DNS data, and the results for the heat exchange coefficients — with those obtained using semi-empirical correlations.


Sign in / Sign up

Export Citation Format

Share Document