A Multi-Objective Optimization of the Reactor Power Plant

Author(s):  
Chen Lei ◽  
Jia Zhen ◽  
Wang Cong ◽  
Gong Zili ◽  
Liao Yi ◽  
...  

From the view of practical engineering application, a compacter nuclear power plant is expected. The weight and the volume of a nuclear power plant can be reduced by optimal selection of the operational parameters. In this work, a thermal-hydraulic model of the reactor, mathematical models of the reactor vessel, the main pipe, the pressurizer, the steam generator, the turbine and the condenser were established for the Qinshan-I nuclear power plant based on the related technical materials. The responses of the optimal targets to the changes of the design variables were studied by the sensitivity analyses. The non-dominated solution front of the nuclear power plant was obtained by means of the immune memory clone constrained multi-objective optimization algorithm. The study shows that the component mathematical models are reliable for the optimization process, the distribution of the non-dominated solution is decided by the steam generator secondary pressure. The volume and the weight of the system could be at least reduced by 23.0% and 9.5%, respectively.

Author(s):  
G. SRINIVAS ◽  
A. K. VERMA ◽  
A. SRIVIDYA ◽  
SANJAY KUMAR KHATTRI

Technical Specifications define the limiting conditions of operation, maintenance and surveillance test requirements for the various Nuclear Power plant systems in order to meet the safety requirements to fulfill regulatory criteria. These specifications impact even the economics of the plant. The regulatory approach addresses only the safety criteria, while the plant operators would like to balance the cost criteria too. The attempt to optimize both the conflicting requirements presents a case to use Multi-objective optimization. Evolutionary algorithms (EAs) mimic natural evolutionary principles to constitute search and optimization procedures. Genetic algorithms are a particular class of EA's that use techniques inspired by evolutionary biology such as inheritance, mutation, natural selection and recombination (or cross-over). In this paper we have used the plant insights obtained through a detailed Probabilistic Safety Assessment with the Genetic Algorithm approach for Multi-objective optimization of Surveillance test intervals. The optimization of Technical Specifications of three front line systems is performed using the Genetic Algorithm Approach. The selection of these systems is based on their importance to the mitigation of possible accident sequences which are significant to potential core damage of the nuclear power plant.


2020 ◽  
Vol 35 (2) ◽  
pp. 95-102
Author(s):  
Chen Zhi ◽  
Yiliang Li ◽  
Huang Ke ◽  
Xiao Kai

A condenser control system of a nuclear power plant consists of a pressure control system, a condensate water sub-cooling degree control system and a water level control system. The existing control optimization methods can hardly take into account all the performance indices of the three control systems at the same time. To solve this problem, this paper presents a control optimization method based on a multi-objective optimization algorithm. This method takes control parameters as optimization objects, and takes the performance of step response as optimization objectives. The multi-objective particle swarm optimization algorithm based on Pareto dominance concept is used to solve the optimization problem. This enables obtaining of high-quality control parameters. Simulation results confirm the feasibility and effectiveness of this control optimization method.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2005 ◽  
Vol 235 (23) ◽  
pp. 2477-2484 ◽  
Author(s):  
Seong Sik Hwang ◽  
Hong Pyo Kim ◽  
Joung Soo Kim ◽  
Kenneth E. Kasza ◽  
Jangyul Park ◽  
...  

2019 ◽  
pp. 119-126

Aplicación de la Teoría de Perturbación – Método Diferencial- al Análisis de Sensibilidad en Generadores de Vapor de Centrales Nucleares PWR-Caso Angra I Aplication of the Perturbation Theory- Differential Methodto Sensibility Análisis in PWR Nuclear Power Plant Steam Generator- Angra I Giol Sanders R, Andrade de Lima F, Marques A, Gallardo A, Bruna M, Zúñiga A Institución Peruano de Energía Nuclear Universidad Federal de Rio De Janeiro-Brasil DOI: https://doi.org/10.33017/RevECIPeru2011.0033/ RESUMEN En este trabajo basado en la tesis del Magíster Roberto Giol S. [1] presenta una aplicación del formalismo diferencial de la teoría de perturbación a un modelo termohidráulico homogéneo de simulación del comportamiento estacionario de uno de los generadores de vapor de la Central Nuclear tipo PWR Angra I del Brasil. Se desarrolla un programa de cálculo PERGEVAP tomando como base el código GEVAP de Souza[2]. El programa PERGEVAP permite realizar cálculos de sensibilidad de funcionales lineales (temperatura media del primario)y no lineales (flujo de calor medio a través de las paredes de los tubos del generador) con relación a las variaciones de ciertos parámetros termo-hidráulicos(flujo másico del primario, calor específico, etc), Los resultados obtenidos con este formalismo son luego comparados con los obtenidos del cálculo directo con el propio código GEVAP, pudiéndose verificar una excelente concordancia. Este método se muestra promisorio para efectuar cálculos repetitivos asociados al diseño y análisis de Seguridad de los componentes de las Centrales Nucleares. Descriptores: teoría de perturbación, método diferencial, sensibilidad, generador de vapor, central nuclear PWR. ABSTRACT This report presents an application of the differential approach of the perturbation theory to an homogeneous model of a PWR steam generator in the Angra 1 Nuclear Power Plan in Brazil under steady-state conditions. Program PERGEVAP was built fom the code GEVAP developed by Souza and allows sensitivity calculations of linear (average primary loop temperature) and non-linear (average heat flux) functionals due to variations in some thermo-hydraulics parameters (flow rate, specific heat, , etc). Results obtained with this approach are then compared with direct calculations performed using the GEVAP code, with excellent agreements. The method has good potential to treat repeated calculations needed in the design and safety analysis of the Nuclear Plant components. Keywords: perturbation theory, differential method, steam generator, PWR nuclear Power Plant.


Sign in / Sign up

Export Citation Format

Share Document