Vertical-Downward Two-Phase Flow Regime Identification by Probabilistic Neural Network (PNN) and Nonlinear Support Vector Machine (SVM)

2021 ◽  
Author(s):  
Wenyi Zhong ◽  
Shouxu Qiao ◽  
Sijia Hao ◽  
Xupeng Li ◽  
Sichao Tan

Abstract The present study proposes a new feature extraction method based on non-stationary conductivity probe signals. Two types of discriminative network models, i.e., the probabilistic neural network (PNN) and nonlinear support vector machine (SVM), are established for flow regime identification using small sample sets. The eigenvectors are composed of 16 feature quantities obtained by wavelet packet decomposition (WPD) and 8 feature quantities in the time-domain derived from the reconstructed low-frequency signals. The 8 features include maximum, minimum, standard deviation, arithmetic mean, kurtosis, peak factor, impulse factor and margin factor. The signals are normalized based on features rather than samples before flow regime identification. In the current study, WPD results show that the conductivity probe signals in two-phase flow are mostly in low frequency. The identification accuracy of the nonlinear SVM is 90.47%, which is better than 83.33% by the PNN method. This study verifies the superiority of nonlinear SVM in solving small samples and nonlinear flow regime classification problems. However, the accuracy of flow regime identification near flow regime transitional boundaries still remains questionable and needs further improvement.

1994 ◽  
Vol 72 (3) ◽  
pp. 440-445 ◽  
Author(s):  
Shiqian Cai ◽  
Haluk Toral ◽  
Jianhung Qiu ◽  
John S. Archer

2007 ◽  
Author(s):  
Leonor Hernández ◽  
José Enrique Juliá ◽  
Sergio Chiva ◽  
Sidharth Paranjape ◽  
Mamoru Ishii

Author(s):  
Yuta Saito ◽  
Shuhei Torisaki ◽  
Shuichiro Miwa

For rational design of industrial machineries such as nuclear power plants and heat exchanging devices, understanding of the two-phase flow regime is crucial. In this study, a new method of flow regime identification using the two-phase fluctuating force signals is proposed. Unlike the existing methodologies to measure two-phase flow parameters, the advantageous feature of utilizing the fluctuating force signal is that the measurement can be conducted under completely intrusive environment. Experiments were conducted using the tri-axial force transducers installed at the 90 degrees pipe bend of the vertical upward flow. For signal classification, machine learning techniques were utilized to identify flow regime, and four types flow regimes, namely, bubbly, slug, churn-turbulent, and annular flows were considered. From the obtained fluctuating force database, the features that characterize the signal were selected in the time and the frequency domain. In the current study, three types of machine learning algorithms such as the artificial neural network (ANN), support vector machine (SVM), and decision tree were examined and results obtained by each learning technique was compared.


2008 ◽  
Vol 238 (1) ◽  
pp. 156-169 ◽  
Author(s):  
J. Enrique Juliá ◽  
Yang Liu ◽  
Sidharth Paranjape ◽  
Mamoru Ishii

Author(s):  
Hiroshi Goda ◽  
Seungjin Kim ◽  
Ye Mi ◽  
Joshua P. Finch ◽  
Mamoru Ishii ◽  
...  

Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document