Three Dimensional Effects in Composite Plates

1999 ◽  
Author(s):  
Santosh Prabhu ◽  
John Lambros

Abstract In this study, a finite element investigation of the three dimensional nature of stress fields in the near tip region of a cracked orthotropic plate was conducted. Two and three dimensional finite element analyses were used to investigate the relative extent of regions of three dimensional to two dimensional (plane stress or plane strain) deformation in the cracked plate. The material properties used in the simulations corresponded to those of a graphite/epoxy composite. A three point bend loading geometry, with the fiber directions either parallel or perpendicular to the crack, was simulated. In analogy to isotropic materials, it was observed that a plane stress K-dominant region does not arise arbitrarily close to the crack tip because of the existence of a three dimensional zone. However, it was seen that the shape and the size of this three dimensional zone in the cracked composite plate is substantially different from that of an isotropic plate, and depends intimately on material properties. For a crack parallel to the fiber direction the three dimensional zone extends to 0.46h (h = specimen thickness) ahead of the crack tip but only to 0.27h at 30°. Fibers perpendicular to the crack produce a highly elongated three dimensional zone in the direction of the fibers (up to 0.78h). The zone is also sensitive to the variations in the Poisson’s ratio’s of the orthotropic solid.

2013 ◽  
Vol 830 ◽  
pp. 93-96 ◽  
Author(s):  
Lu Lu ◽  
Hong Xia Cui

In this paper, the simulation of the piercing process is performed by the three-dimensional finite-element method in Dieschers mill. The material properties of steel 33Mn2V are introduced. The simulated results visualize dynamic evolution of temperature, especially inside the workpiece. Its show the distribution of temperature on the internal and external surface of the work-piece is non-uniform. The temperature of the internal surface is far higher than that of the external surface of workpiece.


1996 ◽  
Vol 63 (2) ◽  
pp. 365-375 ◽  
Author(s):  
E. R. Kral ◽  
K. Komvopoulos

Three-dimensional finite element simulations of the indentation and sliding of a rigid sphere on a half-space with a harder and stiffer layer are presented. The sphere is modeled by contact elements, thereby avoiding a priori assumptions for the pressure profile. Indentations are performed to normal loads of 100 and 200 times the initial yield load of the substrate material and subsequent sliding is performed at a constant normal load to distances of approximately twice the indentation contact radius. Two complete load cycles are performed in selected cases to assess the effect of repeated sliding on the surface displacements and contact stresses. The effects of layer material properties, interface friction, and normal load on the sliding and residual contact stresses and forward plastic flow are examined. Emphasis is given to the sliding and residual tensile stresses at the surface in order to assess the consequences for crack initiation and subsequent failure as a function of the layer material properties, the coefficient of friction, and normal load. The finite element results are shown to be in good agreement with the results of analytical and experimental studies.


2018 ◽  
Vol 3 (6) ◽  
pp. 15
Author(s):  
Chinedum Vincent Okafor

This study focuses on analyzing the response of a typical ribbed aluminum panel under flexure. A three dimensional finite element model was developed to stimulate the static flexure behavior. The model is a 2.0m (length) x 1.0m (width) x 0.005m (Thickness) with a rib height of 0.038m, crest width of 0.019m and pan distance at 0.055m between intermediate ribs. The load deflection response of the aluminum panel under different flexural loading condition was stimulated. The linear material properties, displacement, stress and strain captured were discussed under static conditions. From the result obtained, the maximum uniformly distributed load carrying capacity of the ribbed aluminum roofing panel under flexure, considering the linear material properties is 665N.


Sign in / Sign up

Export Citation Format

Share Document