Subsonic and Intersonic Dynamic Crack Growth in Unidirectional Composites

1999 ◽  
Author(s):  
Demirkan Coker ◽  
Ares J. Rosakis ◽  
Yonggang Y. Huang

Abstract Some recent experimental observations of highly dynamic crack growth events in thick unidirectional graphite fiber-reinforced epoxy matrix composite plates are presented. The composite plates were symmetrically (mode-I) and asymmetrically (mode-II) loaded in a one-point bend configuration with an edge pre-notch machined in the fiber direction. The lateral shearing interferometric technique of coherent gradient sensing (CGS) was used in conjunction with high-speed photography. Symmetric, mode-I cracks initiated at 1300 m/s and subsequently accelerated up to the Rayleigh wave speed but never exceeded it. For asymmetric, Mode-II types of loading, the results reveal highly unstable and intersonic, shear-dominated crack growth along the fibers. The intersonic cracks propagated with unprecedented speeds reaching 7400 m/s, more than three times the shear wave speed of the composite, and featured a shock wave structure typical of disturbances travelling with speeds higher than one of the characteristic wave speeds in the solid.

2000 ◽  
Author(s):  
A. J. Rosakis ◽  
D. Coker ◽  
C. Yu ◽  
M. Ortiz

Abstract In this paper dynamic fracture behavior of unidirectional graphite-epoxy composite plates is investigated experimentally and numerically. Crack propagation experiments are conducted on thick unidirectional graphite-epoxy composite plates subjected to in-plane, symmetric and asymmetric, impact loading. The coherent gradient sensing technique (CGS) is used in conjunction with high-speed photography to visualize the crack growth events. Cracks are found to propagate at subsonic speeds in the Mode-I case, whereas in both mixed mode and Mode-II the crack tip speed clearly exceeds the shear wave speed of the laminate. In the case of symmetric loading (Mode-I), the crack tip speeds approach the Rayleigh wave speed of the composite (1500 m/s), however it never exceeds it as predicted by asymptotic analysis. The situation is found to be entirely different for growing shear (Mode-II) cracks. A shock wave emanating from the crack tip is observed in the optical patterns. This provides direct evidence that the crack propagates faster than the shear wave speed of the composite. The crack tip speed is then observed to jump to a level close to the axial longitudinal wave speed along the fibers (7500 m/s) and then to stabilize to a lower level of approximately 6500 m/s. This speed corresponds to the speed at which the energy release rate required for shear crack growth is non-zero as determined from asymptotic analysis. The CGS interferograms also reveal the existence of large-scale frictional contact of the crack faces behind the moving shear cracks. In addition high speed thermographic measurements are conducted that show concentrated hot spots behind the crack tip indicating crack face frictional contact. Finally, these experiments are modeled by a detailed dynamic finite element calculation involving cohesive elements, newly developed adaptive remeshing using subdivision and edge collapse, composites element, and penalty contact. The numerical calculations are calibrated on the basis of fundamental material properties measured in the laboratory. The numerical methodology is subsequently validated by direct comparison to optical experimental measurements (crack speed record and near tip deformation field structure). For shear crack growth the numerics also reveal the experimentally observed shock wave structure and confirm the optical observation of large-scale crack face contact.


We present findings of an experimental study of dynamic decohesion of bimaterial systems composed of constituents with a large material property mismatch. Poly-methylmethacrylate (PMMA)-steel and PMMA-aluminium bimaterial fracture specimens were used. Dynamic one-point bend loading was accomplished with a drop-weight tower device (for low and intermediate loading rates) or a high-speed gas gun (for high loading rates). High-speed interferometric measurements were made using the lateral shearing interferometer of coherent gradient sensing in conjunction with high-speed photography. Very high crack propagation speeds (terminal crack-tip speeds up to 1.5 c s PMMA , where c s PMMA is the shear wave speed of PMMA) and high accelerations (of about 10 7 g , where g is the acceleration of gravity) were observed and are reported. Issues regarding data analysis of the high-speed interferograms are discussed. The effects of near-tip three-dimensionality are also analysed. Dynamic complex stress factor histories are obtained by fitting the experimental data to available asymptotic crack-tip fields. A dynamic crack growth criterion for crack growth along bimaterial interfaces is proposed. In the subsonic regime of crack growth it is seen that the opening and shearing displacements behind the propagating crack tip remain constant and equal to their value at initiation, i.e. the crack retains a self-similar profile during crack growth at any speed. This forms the basis of the proposed dynamic interfacial fracture criterion.


2008 ◽  
Vol 41-42 ◽  
pp. 169-173
Author(s):  
Wei Ma

A recoverable plate impact testing technology has been used for studying the growth mechanisms of mode II crack. The results show that interactions of microcracks ahead of a crack tip cause the crack growth unsteadily. Failure mode transitions of materials were observed. Based on the observations, a discontinuous crack growth model was established. Analysis shows that the shear crack grows unsteady as the growth speed is between the Rayleigh wave speed cR and the shear wave speed cs; however, when the growth speed approaches 2cs, the crack grows steadily. The transient microcrack growth makes the main crack speed to jump from subsonic to intersonic and the steady growth of all the sub-cracks leads the main crack to grow stably at an intersonic speed.


2000 ◽  
Vol 23 (3) ◽  
pp. 299-305
Author(s):  
Zhenhan Yao ◽  
Zhihong Zhou ◽  
Bo Wang

2009 ◽  
Vol 80 (12) ◽  
pp. 1520-1543 ◽  
Author(s):  
Qinglin Duan ◽  
Jeong-Hoon Song ◽  
Thomas Menouillard ◽  
Ted Belytschko

1980 ◽  
Vol 12 (8) ◽  
pp. 1015-1017
Author(s):  
L. A. Maslov ◽  
B. N. Shchirgin

Sign in / Sign up

Export Citation Format

Share Document