Dynamics of Composite Structures With Multiple Delaminations

Author(s):  
W. Lestari ◽  
H. Lou ◽  
S. Hanagud

Abstract The objective of this paper is to explore if changes in the structural dynamic response and structural dynamic characteristics can be used to identify the existence, location and magnitude of defects like a delamination or an impact damage, at the macroscale level, before they can grow to their critical sizes. Specifically dynamic response of composite structures, with delamination defects, is discussed in this paper. The experimental analysis is performed to capture the effects of nonlinearities on the dynamic response of a beam with multiple delaminations. To describe the opening and closing mode of the delaminated segments of the beam during the vibration, an analysis is performed by using a model with piecewise spring. Then, the nonlinear dynamic response is calculated.

2019 ◽  
Vol 83 ◽  
pp. 01010
Author(s):  
Xin-Miao Li ◽  
Zhi-Wen Zhu ◽  
Qing-Xin Zhang

A kind of constitutive model of SMA is proposed in this paper, and the nonlinear dynamic response of a SMA gripper under bounded noise is studied. The harmonic driving signals and the random disturbance made up of bounded noise. The dynamic model of the system is established by Hamilton principle. The numerical and experimental results show that there is stochastic resonance in the system; the system’s vibration amplitude reaches the most when the outside excitation is moderate.


2018 ◽  
Vol 24 (22) ◽  
pp. 5472-5484 ◽  
Author(s):  
Ahmet Can Altunişik ◽  
Ali Fuat Genç ◽  
Murat Günaydin ◽  
Fatih Yesevi Okur ◽  
Olguhan Şevket Karahasan

In this paper, the aim was to determine the nonlinear dynamic response of historical masonry armory buildings using a validated finite element model. Eight ambient vibration tests were conducted on the building, using three different measurement test setups to extract the dynamic characteristics using the Enhanced Frequency Domain Decomposition method. A finite element model was constructed in ANSYS and the dynamic characteristics were obtained numerically. It can be seen that there is a good correlation between the mode shapes, but there are differences in natural frequencies with maximum values of 10.1%, 7.4% and 13.4% for first the three modes. To determine the nonlinear dynamic response, the validated finite element model was analyzed using the Kocaeli earthquake motion. The Drucker–Prager criterion and Willam–Warnke surface were considered for the nonlinear material models. At the end of the analyses, maximum displacements, principal stresses and strains are given in detail using contour diagrams. It is evident that the displacements show an increasing trend from the base to the top point of the building. Stresses occurred on the corners, openings and transition segments. In addition, crack distribution diagrams were drawn up to illustrate the stress accumulation points.


Sign in / Sign up

Export Citation Format

Share Document