equivalent static loads
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 0)

Author(s):  
A.A. Komarov ◽  

The practices of hazardous and unique facilities’ construction imply that specific attention is paid to the issues of safety. Threats associated with crash impacts caused by moving cars or planes are considered. To ensure safety of these construction sites it is required to know the potential dynamic loads and their destructive capacity. This article considers the methodology of reducing dynamic loads associated with impacts caused by moving collapsing solids and blast loads to equivalent static loads. It is demonstrated that practically used methods of reduction of dynamic loads to static loads are based in schematization only of the positive phase of a dynamic load in a triangle forms are not always correct and true. The historical roots of this approach which is not correct nowadays are shown; such approach considered a detonation explosion as a source of dynamic load, including TNT and even a nuclear weapon. Application of the existing practices of reduction of dynamic load to static load for accidental explosions in the atmosphere that occur in deflagration mode with a significant vacuumization phase may cause crucial distortion of predicted loads for the construction sites. This circumstance may become a matter of specific importance at calculations of potential hazard of impacts and explosions in unique units — for instance, in the nuclear plants. The article considers a situation with a plane crash, the building structure load parameters generated at the impact caused by a plane impact and the following deflagration explosion of fuel vapors are determined.


Author(s):  
Sang-ok Park ◽  
Wook-Han Choi ◽  
Gyung-Jin Park

Viscoelastic material is widely used in automotive structures due to its outstanding vibration-damping characteristics with appropriate stiffness. Viscoelastic material, which has viscosity and elasticity, shows energy absorption and dissipation. The material properties of viscoelastic material are dependent upon time, temperature, and loading path. Hence, these characteristics have to be considered when performing structural optimization. Studies on the constitutive equations of viscoelastic material are widely carried out, and structural optimization using harmonic excitation in the frequency-domain is often reported. However, structural optimization in the time-domain is rarely performed. One of the reasons is that the cost of sensitivity analysis is quite expensive. The Equivalent Static Loads Method (ESLM) is a linear/nonlinear dynamic response structural optimization method. In this research, a practical structural optimization method to consider the characteristics of viscoelastic material is proposed using ESLM. Equivalent static loads (ESLs) are defined as the static loads that generate the same displacement field as that from dynamic analysis. In ESLM, dynamic analysis and linear static response optimization are alternatively repeated until convergence is achieved. Viscoelastic material reduces the vibration amplitude and the stored energy in a structural system. Thus, excellent damping performance is required for a part with viscoelastic material, while the proper stiffness is maintained. An appropriate design formulation is made for the design of viscoelastic material. In this research, the sum of damping ratios, the sum of weighted damping ratios, and the sum of squared displacements are considered as the objective functions. These three objective functions deal with the peak displacements of damped vibration. Three case studies are defined by optimizations of some typical automotive parts with viscoelastic material. They are a sandwich panel, a rubber bushing, and a seat cushion. The damping performances of the objective functions are compared and discussed.


Author(s):  
Chun Ren ◽  
Haitao Min ◽  
Tianfei Ma ◽  
Fangquan Wang

The equivalent static loads method for nonlinear dynamic response structural optimization may be failed in large deformation crash conditions, due to topology optimization with the equivalent static loads mostly beyond the linear range and causing numerical defects such as high compliance of elements. To overcome the above disadvantage, an advanced structural topology optimization method for crashworthiness considering crash-reduced large deformation and plastic buckling is proposed using newly defined equivalent linear static loads. The equivalent linear static loads can adaptively scale to guarantee that the topology optimization is performed within linear range. At each cycle, the crash simulation is performed and the nonlinear nodal displacement vector at the time step with the maximum strain energy is scaled by an adaptive displacement-scaling factor. The equivalent linear static loads that are generated by multiplying the linear stiffness matrix and the scaled nodal displacement vector will be incorporated into topology optimization, which can guarantee the topology optimization to remain in linear range and further solve the numerical instability problems. The process is repeated until the convergence criteria are satisfied. The effectiveness of the proposed method is evaluated by solving a crashworthiness topology optimization of a crash box considering crash-induced plastic buckling to determine the location and profile of crash triggers. The results show that the proposed method can effectively solve the large deformation crashworthiness topology optimization of thin-walled structures and provides a feasible strategy for crash triggers design in crash box.


Author(s):  
Chun Ren ◽  
Haitao Min ◽  
Tianfei Ma ◽  
Fangquan Wang

In this study, an efficient topology optimization method under crash loads is proposed by combining the equivalent static loads with a model order reduction method, which is referred as the reduced model–based equivalent static loads method for nonlinear dynamic response topology optimization method. Considering that some parts of the vehicle experience large nonlinear deformations, whereas others exhibit only small linear deformations in a vehicle crash scenario, the linear and nonlinear behavior parts are identified and the whole model of the complete structure is divided into nonlinear and linear sub-models. At each cycle, the model order reduction method is used in the linear sub-model during crash analysis to solve the low-density-elements-induced mesh distortion problem and accelerate this process. In the linear static topology optimization, the nonlinear sub-model that was initially used to describe the nonlinear behavior part is linearized by the equivalent static loads method and then reduced by the Guyan reduction method. Then, the reduced equivalent static load model is assembled into the linear sub-model that is defined as the design space to formulate a reduced topology optimization model of the complete structure and the reduced equivalent static loads that only act on master degrees of freedom are calculated. Finally, the linear static topology optimization is performed based on the reduced topology optimization model with the reduced equivalent static loads to enhance the efficiency and improve the numerical stability. The process is repeated until the convergence criterion is satisfied. The effectiveness of the proposed method is demonstrated by investing a numerical example. The results show that the proposed method provides a feasible strategy for the topology optimization under crash loads, which can effectively improve the numerical stability and convergence.


Author(s):  
Jong-Min Yoon ◽  
Youngmyung Lee ◽  
Sang-Ok Park ◽  
Yong-Ha Han ◽  
Gyung-Jin Park

In the crashworthiness of the vehicle, the head injury criterion is the most significant factor in the injury rate. Crash optimization has been employed to enhance the head injury criterion value. Since the head injury criterion value is calculated from acceleration, a surrogate-model-based crash optimization method is generally used. However, when the number of design variables increases, the cost of analysis increases extremely. Conceptual design such as topology optimization is difficult to apply since it has many design variables. A crash optimization methodology that considers the head injury criterion value is proposed based on the equivalent static loads method. The proposed method calculates the head injury criterion value using the finite difference method, and the channel frequency classes filter during linear static-response structural optimization with the equivalent static loads. Two practical large-scale problems are solved to validate the proposed method. For the headform impact on the upper interior, size optimization is carried out to satisfy the constraint on the head injury criterion value while the mass is minimized. Topology optimization is performed in the case of the hood headform impact. The material distribution of the inner panel in the hood is determined to minimize the head injury criterion value.


Sign in / Sign up

Export Citation Format

Share Document