Should Adaptive Cruise Control (ACC) Systems Be Designed to Maintain a Constant Time-Gap Between Vehicles?

Author(s):  
Junmin Wang ◽  
Rajesh Rajamani

Abstract This paper addresses the stability of traffic flow on a highway when the vehicles operate under an adaptive cruise control (ACC) system. ACC systems are commonly designed to maintain a constant time-gap between vehicles during vehicle following. Previous researchers in literature have produced contradictory results on whether the traffic flow is stable when the constant time gap spacing policy is used. This paper resolves the contradiction and shows that the boundary conditions used at the inlets and exits influence traffic flow stability in the case of the constant time-gap policy. Further, the paper shows that it is possible to design an unconditionally stable spacing policy, i.e. a spacing policy which guarantees traffic stability under all boundary conditions. The practical implications of instability are shown through traffic simulation results. The advantages of an unconditionally stable spacing policy over the constant time-gap policy are demonstrated. The answer to the question “Should ACC systems be designed to maintain a constant time gap between vehicles?” is NO. It is quite easy to develop alternate spacing policies with superior stability properties.

Author(s):  
Yu Zhang ◽  
Yu Bai ◽  
Jia Hu ◽  
Meng Wang

Communication delay is detrimental to the performance of cooperative adaptive cruise control (CACC) systems. In this paper, we incorporate communication delay explicitly into control design and propose a delay-compensating CACC. In this new CACC system, the semi-constant time gap (Semi-CTG) policy, which is modified on the basis of the widely-used CTG policy, is employed by a linear feedback control law to regulate the spacing error. The semi-CTG policy uses historical information of the predecessor instead of its current information. By doing so, communication delay is fully compensated, which leads to better stability performance. Three stability properties—local stability, string stability, and traffic flow stability—are analyzed. The local stability and string stability of the proposed CACC system are guaranteed with the desired time gap as small as the communication delay. Both theoretical analysis and simulation results show that the delay-compensating CACC has better string stability and traffic flow stability than the widely-used CACC system. Furthermore, the proposed CACC system also shows the potential for improving traffic throughput and fuel efficiency. Robustness of the proposed system against uncertainties of sensor delay and vehicle dynamics is also verified with simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiakuan Dong ◽  
Jiangfeng Wang ◽  
Lei Chen ◽  
Zhijun Gao ◽  
Dongyu Luo

With the emerging application of low-level driving automation technology, heterogeneous traffic flow mixed with human-driven vehicles and low-level autonomous vehicles is dawning. In this context, it is imperative to investigate its effect on mixed traffic flow. As a key component for adaptive cruise control (ACC) which is a practical low-level application of driving automation, the time gap policy determines the dynamic of ACC-equipped vehicles and plays a crucial role in traffic flow stability and efficiency. There are two main time gap policies used for ACC at present, namely, constant time gap (CTG) policy and variable time gap (VTG) policy. In this study, we carried out a detailed comparison between these time gap policies to investigate their potential effect on mixed traffic flow, where the analytical- and simulation-based approaches are both considered. Analytical results show that VTG policy is superior to CTG policy in stabilizing the mixed traffic flow. In addition, numerical simulations are also conducted and simulation results further support the analytical results. As for throughput, there is no difference between CTG policy and VTG policy in analytical progress when the same time gap is set at the equilibrium. However, simulation results based on an on-ramp scenario show that the throughput of mixed traffic flow with VTG policy is slightly higher than that of CTG policy. Meanwhile, the scatter of mixed traffic flow with VTG policy in the flow-density diagram gradually clusters in the middle range of density (i.e., 20–40 veh/km) with the increase of the penetration rates of ACC vehicles, where the traffic flow operates more efficiently. These results indicate that VTG policy is better than CTG policy when designing controllers for ACC in the context of traffic flow operation and control.


1999 ◽  
Author(s):  
Darbha Swaroop ◽  
K. R. Rajagopal

Abstract In analogy to the flow of fluids, it is expected that the aggregate density and the velocity of vehicles in a section of a freeway adequately describe the traffic flow dynamics. The conservation of mass equation together with the aggregation of the vehicle following dynamics of controlled vehicles describes the evolution of the traffic density and the aggregate speed of a traffic flow. There are two kinds of stability associated with traffic flow problems — string stability (or car-following stability) and traffic flow stability. We make a clear distinction between traffic flow stability and string stability, and such a distinction has not been recognized in the literature, thus far. String stability is stability with respect to intervehicular spacing; intuitively, it ensures the knowledge of the position and velocity of every vehicle in the traffic, within reasonable bounds of error, from the knowledge of the position and velocity of a vehicle in the traffic. String stability is analyzed without adding vehicles to or removing vehicles from the traffic. On the other hand, traffic flow stability deals with the evolution of traffic velocity and density in response to the addition and/or removal of vehicles from the flow. Traffic flow stability can be guaranteed only if the velocity and density solutions of the coupled set of equations is stable, i.e., only if stability with respect to automatic vehicle following and stability with respect to density evolution is guaranteed. Therefore, the flow stability and critical capacity of any section of a highway is dependent not only on the vehicle following control laws and the information used in their synthesis, but also on the spacing policy employed by the control system. Such a dependence has practical consequences in the choice of a spacing policy for adaptive cruise control laws and on the stability of the traffic flow consisting of vehicles equipped with adaptive cruise control features on the existing and future highways. This critical dependence is the subject of investigation in this paper. This problem is analyzed in two steps: The first step is to understand the effect of spacing policy employed by the Intelligent Cruise Control (ICC) systems on traffic flow stability. The second step is to understand how the dynamics of ICC system affects traffic flow stability. Using such an analysis, it is shown that cruise control systems that employ a constant time headway policy lead to unacceptable characteristics for the traffic flows.


Author(s):  
Rajesh Kumar Gupta ◽  
L. N. Padhy ◽  
Sanjay Kumar Padhi

Traffic congestion on road networks is one of the most significant problems that is faced in almost all urban areas. Driving under traffic congestion compels frequent idling, acceleration, and braking, which increase energy consumption and wear and tear on vehicles. By efficiently maneuvering vehicles, traffic flow can be improved. An Adaptive Cruise Control (ACC) system in a car automatically detects its leading vehicle and adjusts the headway by using both the throttle and the brake. Conventional ACC systems are not suitable in congested traffic conditions due to their response delay.  For this purpose, development of smart technologies that contribute to improved traffic flow, throughput and safety is needed. In today’s traffic, to achieve the safe inter-vehicle distance, improve safety, avoid congestion and the limited human perception of traffic conditions and human reaction characteristics constrains should be analyzed. In addition, erroneous human driving conditions may generate shockwaves in addition which causes traffic flow instabilities. In this paper to achieve inter-vehicle distance and improved throughput, we consider Cooperative Adaptive Cruise Control (CACC) system. CACC is then implemented in Smart Driving System. For better Performance, wireless communication is used to exchange Information of individual vehicle. By introducing vehicle to vehicle (V2V) communication and vehicle to roadside infrastructure (V2R) communications, the vehicle gets information not only from its previous and following vehicle but also from the vehicles in front of the previous Vehicle and following vehicle. This enables a vehicle to follow its predecessor at a closer distance under tighter control.


Sign in / Sign up

Export Citation Format

Share Document