Configuration-Space Searching and Optimizing Tool Orientations for 5-Axis Machining

Manufacturing ◽  
2002 ◽  
Author(s):  
Cha-Soo Jun ◽  
Yuan-Shin Lee ◽  
Kyungduck Cha

This paper presents a methodology and algorithms of optimizing and smoothing the tool orientation control for 5-axis sculptured surface machining. A searching method in the machining configuration space (C-space) is proposed to find the optimal tool orientation by considering the local gouging, rear gouging and global tool collision in machining. Based on the machined surface error analysis, a boundary search method is developed first to find a set of feasible tool orientations in the C-space to eliminate gouging and collision. By using the minimum cusp height as the objective function, we first determine the locally optimal tool orientation in the C-space to minimize the machined surface error. Considering the adjacent part geometry and the alternative feasible tool orientations in the C-space, tool orientations are then globally optimized and smoothed to minimize the dramatic change of tool orientation during machining. The developed method can be used to automate the planning and programming of tool path generation for high performance 5-axis sculptured surface machining. Computer implementation and examples are also provided in the paper.

Author(s):  
Zezhong C. Chen ◽  
Gang Liu

Due to their complex geometries, sculptured surface parts should be machined with multiple cutters of optimal sizes for high quality and productivity. Current methods of determining cutter sizes, however, are conservative and inefficient; their repeating process includes subjective cutter selection, intensive tool-path generation, and time-consuming gouging-and-interference detection in simulation. Our research proposes a new intelligent approach to multiple standard cutters of maximum sizes for three-axis sculptured surface machining. An innovative generic model of maximum allowable cutters in three-axis surface milling is built to eliminate any cutter causing local gouging and global interference. After the optimum standard cutters are automatically selected, their accessible regions can be identified, and the corresponding tool-paths can be generated, respectively. This approach is practical and effective in the process planning for three-axis milling of sculptured surface parts.


2010 ◽  
Vol 97-101 ◽  
pp. 2477-2480
Author(s):  
Xu Jing Yang ◽  
Guang Yong Sun ◽  
Qing Li

This paper proposes a new approach to tool path generation in precision machining of parts with sculptured surface. It aims to develop an effective NURBS fitting algorithm suitable for machining sophisticated parts requiring smooth profile on sculptured surface. In order to generate NURBS tool path with fewer control points, a dual-loop fitting technique is proposed in this paper. A general sculptured surface model is used to test the effectiveness of this method. It is shown that the proposed algorithm proved to be robust and effective in generating precise NURBS tool path. This makes the proposed algorithm suitable to convert conventional CNC tool path to more precise NURBS tool path. This approach may be of potential to be widely implemented in the manufacturing industry.


2012 ◽  
Vol 472-475 ◽  
pp. 8-12
Author(s):  
Shu Yun Meng ◽  
Dong Biao Zhao

An algorithm is proposed on the real-time generation of cutter location curves for pen-cutting of sculptured surface. First of all, the parameter of driving curves can be calculated based on Taylor series expansion according the kinematics and geometric relation between cutter contact loci and driving curves. Cutter contact points on the surface can be achieved. Then cubic B-spline curves are used to fit the ideal cutter location curves. Examples and analysis results have indicated that the algorithm can realize the regeneration of tool path, simplifying the NC programming and improving the precision of sculptured surface machining.


Author(s):  
Peter Jang ◽  
James A. Stori

This paper presents a new offsetting approach for tool path generation in three-axis sculptured surface machining. The approach generates tool paths with scallop, curvature, and force characteristics which make them suitable for high speed machining. An ellipse in the parametric space is used to approximate the intersection between the ball-end mill and the scallop surface for any cutter contact point on the surface. The envelope formed by these swept ellipses of varying dimension and orientation creates a constant scallop curve which is used to generate offset paths. The offset is developed incrementally, utilizing post-processing techniques to eliminate high-curvature regions in the trajectory. The offsetting approach can generate continuous spiraling trajectories which offer the benefit of minimal tool retractions. Results are shown for spiraling paths generated from both convex and non-convex boundaries.


Sign in / Sign up

Export Citation Format

Share Document