Identifying Common Platform Shape for a Family of Components

Author(s):  
Manojkumar Natarajan ◽  
Zahed Siddique

To survive in today’s volatile and changing markets, companies are now faced with the problem of providing more customization, greater quality, faster response, more innovative designs and lower prices. New models need to be introduced in the market more frequently, which has given momentum to design product platforms. Use of common components can reduce the design and manufacturing time significantly. Determining commonality among different components is a key to reducing the new product design cycle time. CAD files can be used as a means to measure commonality for a set of similar components. This paper presents a tree-based approach to compare a set of similar 3D CAD models, measure shape commonality and identify the common platform shape. First a mapping of the solid models using the IGES format to IPG (IGES Parametric Graph) has been developed. The IPG, a Labeled Attribute Tree, is used to capture the three dimensional shape and design attributes along with the function of the component. The IPGs are then used to obtain a commonality index and establish a common platform for a set of similar products. The applicability of the method is demonstrated using CAD models of a family of casing. This research can also be applied to identify existing components that can be reused in new products.

Author(s):  
Karthik Viswanathan ◽  
Sagar Chowdhury ◽  
Zahed Siddique

Computer-Aided Design (CAD) is used extensively during mechanical product design, which involves creating 3D models of components and then assembling them into modules and systems. Methods and tools to compare components and identify a common platform using these 3D CAD models of components would facilitate faster specification of product family architecture. Hence, there is a need to develop means for comparing component geometry, in order to identify the common and distinct features, determine component commonality, and identify a common platform for the set of components. This paper presents an approach to determine geometric commonality between components from their 3D solid models. The approach consists of performing a pair-wise comparison between components. To measure commonality for a pair of components, first all feature-pair’s dimensions and positions are measured, which then combined to give the overall component-pair commonality.


2006 ◽  
Vol 37 (4) ◽  
pp. 583
Author(s):  
Michael McGowan

This article examines the relatively new fields of colour and shape trade marks. It was initially feared by some academics that the new marks would encroach on the realms of patent and copyright.  However, the traditional requirements of trade mark law, such as functionality and descriptiveness, have meant that trade marks in colour and shape are extremely hard to acquire if they do not have factual distinctiveness. As colour and shape trade marks have no special restrictions, it is proposed that the combination trade mark theory and analysis from the Diamond T case should be used as a way to make them more accessible. The combination analysis can be easily applied because every product has a three dimensional shape and a fourth dimension of colour.


2017 ◽  
Author(s):  
Tatsuya Kitamura ◽  
Hironori Takemoto ◽  
Hisanori Makinae ◽  
Tetsutaro Yamaguchi ◽  
Kotaro Maki

2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


Sign in / Sign up

Export Citation Format

Share Document