Molecular Dynamics Simulation of Ultrafast Laser Ablation of Fused Silica

Author(s):  
Changrui Cheng ◽  
Xianfan Xu ◽  
Yaguo Wang ◽  
Alejandro Strachan

In recent decades, ultrafast lasers have been used successfully to micro-machine fused silica. The high intensity laser pulses first excite valence electrons to the conduction band via photoionization and avalanche ionization. The excited free electrons absorb laser energy, and transfer its energy to the ions, resulting in the temperature rise. This ionization leads to significant changes in Coulomb forces among the atoms. Both thermal and non-thermal (Coulomb explosion) ablation processes have been discussed in the literature [1]. This work applies molecular dynamics technique to study the interaction between ultrafast laser pulses and fused silica and the resulting ablation. The main goal of this work is to investigate the ultrafast laser ablation process of fused silica, and to reveal the mechanisms leading to the material's removal. In this MD simulation, the equilibrium state of fused silica is first established at 300 K, and the laser heating and material removal processes are simulated. The ionization of the material and the energy coupling between the laser beam and free electrons and ions are considered. Thermal and non-thermal mechanisms of fused silica ablation are discussed based on calculation results.

2017 ◽  
Vol 1 (6) ◽  
Author(s):  
Alexander Miloshevsky ◽  
Mark C. Phillips ◽  
Sivanandan S. Harilal ◽  
Phillip Dressman ◽  
Gennady Miloshevsky

2015 ◽  
Vol 1112 ◽  
pp. 120-123 ◽  
Author(s):  
Riser Fahdiran ◽  
Herbert M. Urbassek

We study laser ablation of nanoparticles (NPs). The interaction of a high-intensity laser pulse with NPs brings the NP into a highly non-equilibrium state. Depending on the energy input from the laser, it will melt and may fragment and evaporate off atoms and clusters. We employ molecular dynamics simulation to study this interaction since thermodynamic properties can be extracted from output data of this simulation. The interatomic interaction is modeled by a Lennard-Jones (LJ) potential. The intensity of the laser is above the ablation threshold. The NP has been chosen to have a spherical shape with diameter 50 s in LJ units. The laser energy is given to the NP instantaneously at the beginning of the simulation and homogenously to all atoms; it corresponds to an energy input of 5.4 e per atom. The simulation is continued up to a time 200 t in LJ units. Temperature-density phase-space trajectories show that the nanoparticle density and temperature strongly decrease after the irradiation. The pressure in the sphere becomes strongly tensile after irradiation. The ablation proceeds by spallation of the irradiated cluster. We provide an analysis of the fragments produced by the ablation of the spherical NP. Our results are contrasted to the case of laser ablation of a thin-film target.


2012 ◽  
Vol 500 ◽  
pp. 351-356 ◽  
Author(s):  
Zeng Qiang Li ◽  
Jun Wang ◽  
Qi Wu

The mechanism of ultrashort pulsed laser ablation of polycrystalline diamond (PCD) is investigated using molecular dynamics simulation. The simulation model provides a detailed atomic-level description of the laser energy deposition to PCD specimens and is verified by an experiment using 300 fs laser irradiation of a PCD sample. It is found that grain boundaries play an important role in the laser ablation. Melting starts from the grain boundaries since the atoms in these regions have higher potential energy and are melted more easily than the perfect diamond. Non-homogeneous melting then takes place at these places, and the inner crystal grains melt more easily in liquid surroundings presented by the melting grain boundaries. Moreover, the interplay of the two processes, photomechanical spallation and evaporation, are found to account for material removal in ultrashort pulsed laser ablation of PCD.


2021 ◽  
Author(s):  
Amirhossein Tavangar ◽  
Bo Tan ◽  
Krishnan Venkatakrishnan

This research work demonstrated that laser-induced reverse transfer (LIRT) can be used for controllable site-specific deposition of fibrous nanostructure. The LIRT method makes it achievable to generate and deposit fibrous nanostructure of a wide variety of materials on a transparent acceptor in a single-step process at an ambient condition. The deposition of fibrous nanostructure was conducted using ultrafast laser ablation of silicon and aluminum targets placed behind a glass acceptor. Femtosecond laser pulses pass through the transparent acceptor and hit the bulk donor. Consequently a mass quantity of nanoparticles ablates from the donor and then aggregates and forms a porous fibrous nanostructure on the transparent acceptor. Our experiments demonstrated that the gap between the target and the glass acceptor was critical in the formation and accumulation of nanofibers and it determines the density of the formed nanostructure. The formation mechanism of the nanostructures can be explained by the well-established theory of vapor condensation within the plume induced by ultrafast laser ablation. Experimental results also show that the length of the nanostructure can be controlled by the gap between the target and glass acceptor. Lastly, energy-dispersive x-ray spectroscopy (EDS) analysis shows the oxygen concentration in the nanofibrous structure which is associated with oxidation of ablated material at ambient atmosphere.


2020 ◽  
Vol 131 ◽  
pp. 106420
Author(s):  
Han Wang ◽  
Kai Zhao ◽  
Hong Shen ◽  
Zhenqiang Yao

2008 ◽  
Vol 93 (19) ◽  
pp. 191504 ◽  
Author(s):  
S. Amoruso ◽  
R. Bruzzese ◽  
X. Wang ◽  
J. Xia

Sign in / Sign up

Export Citation Format

Share Document