interatomic interaction
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 51)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Николай Александрович Панькин

Исследование структуры нанокластеров при различных температурах является актуальной задачей современного материаловедения. Данный факт обусловлен перспективой их применения при создании материалов с уникальными физическими, механическими, химическими и эксплуатационными свойствами. Компьютерное моделирование проводилось методом классической молекулярной динамики в программном комплексе LAMMPS. Для описания межатомного взаимодействия в кластере использовалась модификация многочастичного потенциала Финниса-Синклера. Проведено изучение структуры нанокластеров титана различного размера. Они получены при различных скоростях охлаждения из жидкого состояния. Увеличение скорости охлаждения приводит к формированию субблочной структуры и росту числа атомов с неупорядоченным окружением. Они обусловлены тем, что большие скорости охлаждения препятствуют равновесному протеканию процессов перестройки атомной структуры с формированием дальнего порядка. Областей с икосаэдрической структурой не обнаружено. Показано, что температура кристаллизации и энергия связи уменьшаются при убывании размера нанокластера. Рост скорости охлаждения увеличивает разницу температур точек начала и конца кристаллизации, соответственно. Результаты моделирования свидетельствуют о менее выраженной размерной зависимости температуры кристаллизации - её оценочное значение для макроскопической системы (810 К) гораздо ниже значения для массивного титана (1940 К). Investigation of the structure of nanoclusters at different temperatures is an urgent task of modern materials science. This fact is due to the prospect of their application in the creation of materials with unique physical, mechanical, chemical and operational properties. Computer simulation was carried out by the method of classical molecular dynamics in the LAMMPS software package. To describe the interatomic interaction in the cluster, a modification of the Finnis-Sinclair many-body potential was used. The structure of titanium nanoclusters of various sizes has been studied. They are obtained at various cooling rates from the liquid state. An increase in the cooling rate leads to the formation of a subblock structure and an increase in the number of atoms with a disordered environment. They are due to the fact that high cooling rates impede the equilibrium process of rearrangement of the atomic structure with the formation of long-range order. No regions with an icosahedral structure were found. It is shown that the crystallization temperature and binding energy decrease with decreasing nanocluster size. An increase in the cooling rate increases the temperature difference between the start and end points of crystallization, respectively. The simulation results indicate a less pronounced dimensional dependence of the crystallization temperature - its estimated value for a macroscopic system (810 K) is much lower than the value for bulk titanium (1940 K). Keywords: nanocluster, binding energy, crystallization temperature, cooling rate, structure, molecular dynamics method.


Author(s):  
Сергей Петрович Крамынин

Основываясь на параметрах парного потенциала межатомного взаимодействия Ми-Леннард-Джонса для Pt, и используя RP-модель нанокристалла, изучены температурные, барические и размерные зависимости следующих свойств: модуля упругости, коэффициента теплового расширения, изобарной теплоемкости и поверхностной энергии. Расчет уравнения состояния Pt показал хорошее согласие с экспериментом. Уравнение состояния было рассчитано вдоль пяти изотерм: T = 300, 1300, 1500, 1700, 1900 К. Впервые с единых позиций выполнены расчеты температурных зависимостей указанных свойств Pt в диапазоне от 0 K до 1500 K вдоль изобар 0 и 50 ГПа. Расчеты указанных зависимостей проведены как для макро-, так и для нанокристалла кубической формы из 306 атомов. Показано, что при изобарно-изотермическом уменьшении размера нанокристалла Pt происходит уменьшение значений модуля упругости и поверхностной энергии, а значения коэффициента теплового расширения и изобарной теплоемкости увеличиваются на исследуемом интервале температур. Based on the parameters of the pair interatomic interaction potential of the Mie-Lennard-Jones for Pt, and using the RP-model of the nanocrystal, the temperature, pressure and size dependencies of the following properties are studied: elastic modulus, thermal expansion coefficient, isobaric heat capacity, and surface energy. The calculation of the equation of state showed good agreement with experiment. The equation of state was calculated along five isotherms: T = 300, 1300,1500, 1700, 1900 K. For the first time, calculations of the temperature dependences of the above properties of Pt in the range from 0 to 1500 K along 0 and 50 GPa isobars were performed from a unified standpoint. Calculations of these dependencies were carried out for both macro- and cubic nanocrystals of 306 atoms. It is shown that with an isobaric-isothermal decrease in the nanocrystal size, the values of the elastic modulus and surface energy decrease, while the values of the thermal expansion coefficient and isobaric heat capacity increase over the investigated temperature range.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012089
Author(s):  
S V Belim ◽  
I V Bychkov ◽  
I V Maltsev

Abstract In this paper, we investigate the behavior of a ferromagnetic (FM) film on a nonmagnetic substrate near the Curie point by the computer simulation. The influence of the substrate is specified using the two-dimensional Frenkel-Kontorova (FK) potential. The study is carried out for a two-dimensional film described by the Ising model. At the first step, we calculate the positions of the substrate’s atoms in the ground state depending on the parameters. The parameters are (i) the ratio of the substrate periods and the crystal lattice of the film; and (ii) the ratio of the substrate potential amplitude to the elasticity coefficient of interatomic interaction. The period ratio determines the system coverage ratio. Minimization of the system’s total energy determines the ground state. Calculations show that the ground state has a periodic structure that differs from a square lattice with a coverage coefficient not equal to unity. We calculate the displacements of atoms from the equilibrium position for systems with a different linear scale.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. V. Louzguine-Luzgin ◽  
A. S. Trifonov ◽  
Yu. P. Ivanov ◽  
A. K. A. Lu ◽  
A. V. Lubenchenko ◽  
...  

AbstractShear-induced segregation, by particle size, is known in the flow of colloids and granular media, but is unexpected at the atomic level in the deformation of solid materials, especially at room temperature. In nanoscale wear tests of an Fe-based bulk metallic glass at room temperature, without significant surface heating, we find that intense shear localization under a scanned indenter tip can induce strong segregation of a dilute large-atom solute (Y) to planar regions that then crystallize as a Y-rich solid solution. There is stiffening of the material, and the underlying chemical and structural effects are characterized by transmission electron microscopy. The key influence of the soft Fe–Y interatomic interaction is investigated by ab-initio calculation. The driving force for the induced segregation, and its mechanisms, are considered by comparison with effects in other sheared media.


2021 ◽  
Vol 2021 (2) ◽  
pp. 10-18
Author(s):  
A. A. Khachatrian ◽  

One of the possible ways to calculate the coefficient of thermal expansion is a method based on determining the dependence of the total energy of the electron-ion system on the parameters of the crystal lattice at different temperatures. There is a relationship between the calculated values of the linear coefficients of thermal expansion and the melting point of the material. For metals and multi-element single-phase alloys, the dependence of the function V = α·Tmax on the parameter T/Tmax (α — the linear coefficients of thermal expansion, Tmax — melting point of the material) is obtained from the first principles, which has the same form for all single-phase multi-element metal alloys and is presented analytically. Using the method of pseudopotential and quasiharmonic approximation, the linear coefficients of thermal expansion of multi-element metal alloys are calculated. The temperature dependence of the coefficient of thermal expansion, after approximating the results of the computational experiment, is presented in analytical form. The results were compared with known tabular data. To confirm the reliability of the model, the calculation was performed for a number of pure metals. The consistency of the calculated and experimental data on the coefficient of thermal expansion of single-phase alloys calculated from the first principles is observed. There is a relationship between the calculated values of the linear coefficients of thermal expansion and the melting point of the material. For metals and multi-element single-phase alloys, the dependence of the function V = α·Tmax on the parameter T/ Tmax (α — the linear coefficients of thermal expansion, Tmax — melting point of the material) is obtained from the first principles, which has the same form for all single-phase multi-element metal alloys and is presented analytically. Keywords: Electron-ion system energy, interatomic interaction potential, force constants, quasiharmonic approximation, coefficient of thermal expansion.


Author(s):  
Dmytro Stepanenko ◽  
Oleksandr Verhun ◽  
Volodymyr Kysliakov ◽  
Viktoriia Petrusha ◽  
Mykyta Pushkarenko

The work is devoted to the development of a methodology for the operational forecast of the properties of the final blast furnace slag by its chemical composition and temperature to improve the quality of hot metal in terms of sulfur content.The analysis of the accumulated experimental data on the properties of modern blast furnace slags is performed, using the criteria of the theory of directed chemical bonding the dependences of liquidus temperature on model parameters are established and an adequate forecast model of bucket slag liquid temperature on its model parameters is obtained.The created technique allows to obtain temperature dependences of density, surface tension, viscosity and electrical conductivity of real blast furnace slags in the temperature range 1200-1400 ° С.The approach to modeling of slag melts at the level of interatomic interaction used in the article can be used to develop predictive models of different technological properties of furnace slags in a wide range of temperatures. The obtained results are of practical importance and can be used for rapid prediction of the liquidity temperature of furnace slags and adjustment of their chemical composition in accordance with technological requirements.


2021 ◽  
Author(s):  
Oleksandr Babachenko ◽  
Hanna Kononenko ◽  
Iryna Snigura ◽  
Nataliya Togobytska

In addition to thermomechanical treatment, one of the main factors affecting the mechanical properties of steel is the chemical composition. The chemical composition may vary for a special high-strength low-alloy steel to meet certain mechanical property requirements. This work presents an approach, based on the method of physical-chemical modelling developed at the Z.I. Nekrasov Iron and Steel Institute of the National Academy of Sciences of Ukraine, to optimise the chemical composition of high-strength structural steels. The principle of this method is to describe the chemical composition of a melt by a complex of integral model parameters of interatomic interaction, characterising the chemical and structural state of the melt. The experimental data were analysed to obtain the regression model for mechanical properties based on the parameters of interatomic interaction. Finally, a multi-criteria optimisation method was applied to obtain an optimal set of microalloying elements which ensure the required mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document