An Robust Adaptive Control Scheme for Hydraulic Servo Systems

Author(s):  
Torben Ole Andersen ◽  
Michael Ryygaard Hansen

The paper looks into Model Reference Adaptive Control (MRAC) based on a linear plant model with constant or slowly varying parameters. The actual plant is non-linear, of a higher model order, subjected to time-varying bounded disturbances, and the measured values may be corrupted by noise. These problems are explored and the adaptive algorithms are modified to counteract instability mechanisms and for improved robustness with respect to bounded disturbances and non-modeled dynamics. The adaptive controller identifies the dominant dynamics and uses feedforward to provide anticipative actions in tracing task while an adaptive feedback part stabilizes the tracking error dynamics. Also the effects of non-modeled high frequency dynamics and bounded disturbances on stability and performance are analyzed. The adaptive control scheme is robust in the sense that it guarantees the existence of a large region of attraction from which all the trajectories remain bounded. The size of the region of attraction depends on the non-modeled dynamics in such a way that if the non-modeled dynamics is infinitely fast, the region of attraction becomes the whole space. Simulation and experimental results are presented and discussed to demonstrate the strength of the proposed algorithm.

Author(s):  
JIANPING CAI ◽  
LUJUAN SHEN ◽  
FUZHEN WU

We consider a class of uncertain non-linear systems preceded by unknown backlash-like hysteresis, which is modelled by a differential equation. We propose a new state feedback robust adaptive control scheme using a backstepping technique and properties of the differential equation. In this control scheme, we construct a new continuous function to design an estimator to estimate the unknown constant parameters and the unknown bound of a ‘disturbance-like’ term. The transient performance of the output tracking error can be guaranteed by the introduction of pre-estimates of the unknown parameters in our controller together with update laws. We do not require bounds on the ‘disturbance-like’ term or unknown system parameters in this scheme. The global stability of the closed-loop system can be proved.


Sign in / Sign up

Export Citation Format

Share Document