heavy particles
Recently Published Documents


TOTAL DOCUMENTS

659
(FIVE YEARS 67)

H-INDEX

54
(FIVE YEARS 4)

2022 ◽  
Vol 34 (1) ◽  
pp. 013305
Author(s):  
A. De Leo ◽  
A. Stocchino
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
pp. 336
Author(s):  
Ines Delfino ◽  
Valerio Ricciardi ◽  
Maria Lepore

Fourier transform infrared microspectroscopy using a synchrotron radiation source (SR-μFTIR) has great potential in the study of the ionizing radiation effects of human cells by analyzing the biochemical changes occurring in cell components. SR-μFTIR spectroscopy has been usefully employed in recent years in some seminal work devoted to shedding light on processes occurring in cells treated by hadron therapy, that is, radiotherapy with charged heavy particles (mainly protons and carbon ions), which is gaining popularity as a cancer treatment modality. These studies are particularly useful for increasing the effectiveness of radiotherapy cancer treatments with charged particles that can offer significant progress in the treatment of deep-seated and/or radioresistant tumors. In this paper, we present a concise revision of these studies together with the basic principles of μFTIR spectroscopy and a brief presentation of the main characteristics of infrared SR sources. From the analysis of the literature regarding the SR-μFTIR spectroscopy investigation on human cells exposed to proton beams, it is clearly shown that changes in DNA, protein, and lipid cell components are evident. In addition, this review points out that the potential offered by SR-μFTIR in investigating the effects induced by charged particle irradiation have not been completely explored. This is a crucial point for the continued improvement of hadron therapy strategies.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1560
Author(s):  
Emad Ismat Ghandourah ◽  
Essam B. Moustafa ◽  
Hossameldin Hussein ◽  
Ahmed O. Mosleh

Improving the mechanical durability and wear resistance of aluminum alloys is a research challenge that can be solved by their reinforcement with ceramics. This article is concerned with the improvement of the mechanical properties and wear resistance of the AA2024 aluminum alloy surface. Surface composites were prepared by incorporating a hybrid of heavy particles (tantalum carbide (TaC), light nanoparticles, and boron nitride (BN)) into the AA2024 alloy using the friction stir process (FSP) approach. Three pattern holes were milled in the base metal to produce the composites with different volume fractions of the reinforcements. The effects of the FSP and the reinforcements on the microstructure, mechanical properties, and wear resistance are investigated. In addition to the FSP, the reinforced particles contributed to greater grain refinement. The rolled elongated grains became equiaxed ultrafine grains reaching 6 ± 1 µm. The refinement and acceptable distribution in the reinforcements significantly improved the hardness and wear resistance of the produced composites. Overall, the hardness was increased by 60% and the wear resistance increased by 40 times compared to the base alloy.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Melissa van Beekveld ◽  
Leonardo Vernazza ◽  
Chris D. White

Abstract Collider observables involving heavy particles are subject to large logarithmic terms near threshold, which must be summed to all orders in perturbation theory to obtain sensible results. Relatively recently, this resummation has been extended to next-to-leading power in the threshold variable, using a variety of approaches. In this paper, we consider partonic channels that turn on only at next-to-leading power, and show that it is possible to resum leading logarithms using well-established diagrammatic techniques in Quantum Chromodynamics. We first consider deep inelastic scattering, where we reproduce the results of a recent study using an effective theory approach. Next, we consider the quark-gluon channel in both Drell-Yan and Higgs boson production, showing that an explicit all-order form for the leading logarithmic partonic cross section can be obtained. Our results agree with previous conjectures based on fixed-order results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Gatchell ◽  
João Ameixa ◽  
MingChao Ji ◽  
Mark H. Stockett ◽  
Ansgar Simonsson ◽  
...  

AbstractLaboratory studies play a crucial role in understanding the chemical nature of the interstellar medium (ISM), but the disconnect between experimental timescales and the timescales of reactions in space can make a direct comparison between observations, laboratory, and model results difficult. Here we study the survival of reactive fragments of the polycyclic aromatic hydrocarbon (PAH) coronene, where individual C atoms have been knocked out of the molecules in hard collisions with He atoms at stellar wind and supernova shockwave velocities. Ionic fragments are stored in the DESIREE cryogenic ion-beam storage ring where we investigate their decay for up to one second. After 10 ms the initially hot stored ions have cooled enough so that spontaneous dissociation no longer takes place at a measurable rate; a majority of the fragments remain intact and will continue to do so indefinitely in isolation. Our findings show that defective PAHs formed in energetic collisions with heavy particles may survive at thermal equilibrium in the interstellar medium indefinitely, and could play an important role in the chemistry in there, due to their increased reactivity compared to intact or photo-fragmented PAHs.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Lena Worbs ◽  
Nils Roth ◽  
Jannik Lübke ◽  
Armando D. Estillore ◽  
P. Lourdu Xavier ◽  
...  

Single-particle X-ray diffractive imaging (SPI) of small (bio-)nanoparticles (NPs) requires optimized injectors to collect sufficient diffraction patterns to allow for the reconstruction of the NP structure with high resolution. Typically, aerodynamic lens-stack injectors are used for NP injection. However, current injectors were developed for larger NPs (>100 nm), and their ability to generate high-density NP beams suffers with decreasing NP size. Here, an aerodynamic lens-stack injector with variable geometry and a geometry-optimization procedure are presented. The optimization for 50 nm gold-NP (AuNP) injection using a numerical-simulation infrastructure capable of calculating the carrier-gas flow and the particle trajectories through the injector is also introduced. The simulations were experimentally validated using spherical AuNPs and sucrose NPs. In addition, the optimized injector was compared with the standard-installation `Uppsala injector' for AuNPs. Results for these heavy particles showed a shift in the particle-beam focus position rather than a change in beam size, which results in a lower gas background for the optimized injector. Optimized aerodynamic lens-stack injectors will allow one to increase NP beam density, reduce the gas background, discover the limits of current injectors and contribute to structure determination of small NPs using SPI.


2021 ◽  
Vol 33 (11) ◽  
pp. 113305
Author(s):  
Ping Wang ◽  
Qingqing Wei ◽  
Xiaojing Zheng

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jeong Han Kim ◽  
Soubhik Kumar ◽  
Adam Martin ◽  
Yuhsin Tsai

Abstract Heavy particles with masses much bigger than the inflationary Hubble scale H*, can get non-adiabatically pair produced during inflation through their couplings to the inflaton. If such couplings give rise to time-dependent masses for the heavy particles, then following their production, the heavy particles modify the curvature perturbation around their locations in a time-dependent and scale non-invariant manner. This results into a non-trivial spatial profile of the curvature perturbation that is preserved on superhorizon scales and eventually generates localized hot or cold spots on the CMB. We explore this phenomenon by studying the inflationary production of heavy scalars and derive the final temperature profile of the spots on the CMB by taking into account the subhorizon evolution, focusing in particular on the parameter space where pairwise hot spots (PHS) arise. When the heavy scalar has an $$ \mathcal{O} $$ O (1) coupling to the inflaton, we show that for an idealized situation where the dominant background to the PHS signal comes from the standard CMB fluctuations themselves, a simple position space search based on applying a temperature cut, can be sensitive to heavy particle masses M0/H* ∼ $$ \mathcal{O} $$ O (100). The corresponding PHS signal also modifies the CMB power spectra and bispectra, although the corrections are below (outside) the sensitivity of current measurements (searches).


2021 ◽  
pp. 223-245
Author(s):  
V.I. Gol’danskii ◽  
L.I. Trakhtenberg ◽  
V.N. Fleurov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document