Analytical Prediction of the Transition to Chaos in Porous Media Natural Convection

Author(s):  
Peter Vadasz

The failure of the linear stability analysis to predict accurately the transition point from steady to chaotic solutions in porous media natural convection motivates this study. A weak non-linear solution to the problem is shown to produce an accurate analytical expression for the transition point as long as the validity condition and consequent accuracy of the latter solution is fulfilled. The analytical results are compared to accurate computational solutions showing an excellent fit within the validity domain of the analytical solution.

Author(s):  
Peter Vadasz

The failure of the linear stability analysis to predict accurately the transition point from steady to chaotic solutions in Lorenz equations motivates this study. A weak non-linear solution to the problem is shown to produce an accurate analytical expression for the transition point as long as the validity condition and consequent accuracy of the latter solution is fulfilled. The analytical results are compared to accurate computational solutions showing an excellent fit within the validity domain of the analytical solution.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 147 ◽  
Author(s):  
Vadasz

A review on instability and consequent natural convection in rotating porous media is presented. Taylor-Proudman columns and geostrophic flows exist in rotating porous media just the same as in pure fluids. The latter leads to a tendency towards two-dimensionality. Natural convection resulting from density gradients in a gravity field as well as natural convection induced by density gradients due to the centripetal acceleration are being considered. The former is the result of gravity-induced buoyancy, the latter is due to centripetally-induced buoyancy. The effect of Coriolis acceleration is also discussed. Linear stability analysis as well as weak nonlinear solutions are being derived and presented.


Author(s):  
Peter Vadasz

The dynamics of weak turbulence in small Prandtl number convection in porous media is substantially distinct than the corresponding dynamics for moderate and large Prandtl numbers. Linear stability analysis is performed and its results compared with numerical computations to reveal the underlying phenomena.


Author(s):  
Gary A. Glatzmaier

This chapter describes a linear stability analysis (that is, solving for the critical Rayleigh number Ra and mode) that allows readers to check their linear codes against the analytic solution. For this linear analysis, each Fourier mode n can be considered a separate and independent problem. The question that needs to be addressed now is under what conditions—that is, what values of Ra, Prandtl number Pr, and aspect ratio a—will the amplitude of the linear solution grow with time for a given mode n. This is a linear stability problem. The chapter first introduces the linear equations before discussing the linear code and explaining how to find the critical Rayleigh number; in other words, the value of Ra for a and Pr that gives a solution that neither grows nor decays with time. It also shows how the linear stability problem can be solved using an analytic approach.


Sign in / Sign up

Export Citation Format

Share Document