A Fast Coupled CFD-Thermal Analysis of a Heavy Duty Diesel Engine Water Cooling System

Author(s):  
Mazdak Jafarabadi ◽  
Hamidreza Chamani ◽  
Amir Malakizadi ◽  
Seyed Ali Jazayeri

In recent years, the design of an efficient cooling system together with good thermal efficiency for a new engine is becoming a critical task and therefore the need for an accurate and fast thermo-fluid simulation of engine cooling system is of vital importance. In this study, a detailed CFD and thermal FE simulation of a 12 cylinders V-type medium speed heavy duty diesel engine cooling system has been carried out using ANSYS-CFX commercial code. At first, a global model, for one bank with six cylinders, has been simulated using appropriate mesh density which ensures the accuracy of the results together with reasonable computational time. At this stage, the worst cylinder has been selected based on the wall temperature and the cooling flow rate. Later, using the inlet and outlet boundary conditions extracted from the global model, a series of detailed thermo-fluid analyses have been conducted for the worst cylinder with a finer mesh. The subcooled nucleate boiling heat transfer computation is carried out using the boiling departure lift-off (BDL) model, in which the total heat flux is assumed to be additively composed of a forced convective and a nucleate boiling component. In order to obtain the temperature field for components under consideration, a comprehensive thermal analysis has been preformed coupling with the detailed CFD analyses to reach an accepted value through transferring data between the CFD and FEA software. This method leads to an accurate prediction of the wall temperature and heat flux. It is observed that at hot spots, nucleate boiling occurs for low coolant flow regions specifically around the cylinder head’s exhaust port and liner coolant side wall. Also a considerable increment in the Heat Transfer Coefficient (HTC) has been observed on the superheated regions where the boiling is initiated.

Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Abstract Diesel engines are the predominant power source in trucking industry. Heavy duty trucks move more than 70% of all goods transported around the United States. The atmospheric conditions vary with altitude but are vital to diesel engine performance, efficiency, and emissions. Existing studies reported reduced thermal efficiency and increased emissions when truck engines were operated at high altitude. As the heat loss is a key parameter related to engine efficiency, the goal of this paper was to investigate the altitude impacts on in-cylinder heat transfer characteristics. A single cylinder four-stroke heavy duty diesel engine was performed at constant speed and load but different intake pressure to simulate the varying atmospheric conditions at different altitude. The engine raised the amount of diesel mass injected to the cylinder per cycle to maintain the identical power output under decreased atmospheric pressure and to compensate the combustion deterioration happened inside the cylinder. The experimental results indicated a higher bulk temperature at high altitude due to a smaller amount of mixture mass trapped inside the cylinder. Such a larger temperature difference between the hot products and the cold walls increased in-cylinder heat transfer to the coolant, especially during the combustion period. Specifically, a rise in 2000m altitude resulted in up to ∼2% increment in heat loss to the atmosphere per fired cycle. As a result, applying thermal coating to improve fuel economy is more necessary in high altitude states, such as Colorado and Wyoming.


2019 ◽  
Vol 200 ◽  
pp. 325-341 ◽  
Author(s):  
Chandan Paul ◽  
Sebastian Ferreyro Fernandez ◽  
Daniel C. Haworth ◽  
Somesh Roy ◽  
Michael F. Modest

2021 ◽  
Vol 156 ◽  
pp. 105781
Author(s):  
Louise Gren ◽  
Vilhelm B. Malmborg ◽  
John Falk ◽  
Lassi Markula ◽  
Maja Novakovic ◽  
...  

2015 ◽  
Vol 8 (2) ◽  
pp. 209-226 ◽  
Author(s):  
Takuya Yamaguchi ◽  
Yuzo Aoyagi ◽  
Noboru Uchida ◽  
Akira Fukunaga ◽  
Masayuki Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document