A Numerical Study of Swirling Buoyant Laminar Jets at Low Reynolds Numbers

Author(s):  
Gordon N. Taub ◽  
Hyungoo Lee ◽  
S. Balachandar ◽  
S. A. Sherif

The effect of swirl on laminar buoyant jets with low Reynolds numbers is explored. Three dimensional direct numerical simulations are performed to solve the time-dependent, incompressible Navier-Stokes equations. We use a body fitted grid system and employ the finite volume method to discretize the governing equations. A second-order central difference scheme is employed for all spatial derivative terms. The numerical simulation is advanced in time by a fractional step method with the second-order Adams-Bashforth scheme for explicit-convection terms and the Crank-Nicholson scheme for implicit-diffusion terms. The amount of swirl and buoyancy is varied from zero to very large values and the effect on the velocity field, jet width, entrainment and vortex are examined. Comparisons with analytical and experimental models are discussed.

1991 ◽  
Vol 113 (4) ◽  
pp. 608-616 ◽  
Author(s):  
H. M. Jang ◽  
J. A. Ekaterinaris ◽  
M. F. Platzer ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp-type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler-387 and NACA-0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en method and the transitional region is modeled properly.


2021 ◽  
Vol 107 ◽  
pp. 103389
Author(s):  
Tao Huang ◽  
Haibo Zhao ◽  
Sai Peng ◽  
Jiayu Li ◽  
Yang Yao ◽  
...  

2007 ◽  
Vol 581 ◽  
pp. 287-321 ◽  
Author(s):  
RUPESH B. KOTAPATI ◽  
RAJAT MITTAL ◽  
LOUIS N. CATTAFESTA III

The flow associated with a synthetic jet transitioning to turbulence in an otherwise quiescent external flow is examined using time-accurate three-dimensional numerical simulations. The incompressible Navier–Stokes solver uses a second-order accurate scheme for spatial discretization and a second-order semi-implicit fractional step method for time integration. The simulations are designed to model the experiments of C. S. Yao et al. (Proc. NASA LaRC Workshop, 2004) which have examined, in detail, the external evolution of a transitional synthetic jet in quiescent flow. Although the jet Reynolds and Stokes numbers in the simulations match with the experiment, a number of simplifications have been made in the synthetic jet actuator model adopted in the current simulations. These include a simpler representation of the cavity and slot geometry and diaphragm placement. Despite this, a reasonably good match with the experiments is obtained in the core of the jet and this indicates that for these jets, matching of these key non-dimensional parameters is sufficient to capture the critical features of the external jet flow. The computed results are analysed further to gain insight into the dynamics of the external as well as internal flow. The results indicate that near the jet exit plane, the flow field is dominated by the formation of counter-rotating spanwise vortex pairs that break down owing to the rapid growth of spanwise instabilities and transition to turbulence a short distance from the slot. Detailed analyses of the unsteady characteristics of the flow inside the jet cavity and slot provide insights that to date have not been available from experiments.


2012 ◽  
Vol 64 ◽  
pp. 1-18 ◽  
Author(s):  
Trushar B. Gohil ◽  
Arun K. Saha ◽  
K. Muralidhar

Author(s):  
H. M. Jang ◽  
M. F. Platzer ◽  
J. A. Ekaterinaris ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp–type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler and NACA–0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en–method and the transitional region is modelled properly.


2018 ◽  
Vol 30 (8) ◽  
pp. 083605 ◽  
Author(s):  
Jianzhi Yang ◽  
Minghou Liu ◽  
Changjian Wang ◽  
Xiaowei Zhu ◽  
Aifeng Zhang

Sign in / Sign up

Export Citation Format

Share Document