Numerical Simulations as a Reliable Alternative for Landmine Explosion Studies: The AUTODYN Approach

Author(s):  
Stephanie Follett ◽  
Amer Hameed ◽  
S. Darina ◽  
John G. Hetherington

In order to validate the numerical procedure, the explosion of a mine was recreated within the non-linear dynamics software, AUTODYN. Two models were created and analysed for the purposes of this study — buried and flush HE charge in sand. The explosion parameters — time of arrival, maximum overpressure and specific impulse were recorded at two stand-off distances above the ground surface. These parameters are then compared with LS-DYNA models and published experimental data. The results, presented in table format, are in reasonable agreement.

2002 ◽  
Vol 33 (7-10) ◽  
pp. 589-603 ◽  
Author(s):  
Ludovic Noels ◽  
Laurent Stainier ◽  
Jean Philippe Ponthot ◽  
Jérôme Bonini

Soft Matter ◽  
2021 ◽  
Vol 17 (16) ◽  
pp. 4363-4374
Author(s):  
A. Martínez-Calvo ◽  
D. Moreno-Boza ◽  
A. Sevilla

The influence of viscoelasticity on the dewetting of ultrathin polymer films is unraveled by means of theory and numerical simulations in the inertialess limit.


Author(s):  
Larissa Steiger de Freitas ◽  
Marcus Vinícius Canhoto Alves ◽  
Rafael Rodrigues Francisco

2002 ◽  
Vol 16 (6) ◽  
pp. 555-561 ◽  
Author(s):  
M. S. Lesniak ◽  
R. E. Clatterbuck ◽  
D. Rigamonti ◽  
M. A. Williams

2017 ◽  
Author(s):  
Giovanni Antonio Chirilli
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1968 ◽  
Author(s):  
Sylvie Bilent ◽  
Thi Hong Nhung Dinh ◽  
Emile Martincic ◽  
Pierre-Yves Joubert

This paper reports on the study of microporous polydimethylsiloxane (PDMS) foams as a highly deformable dielectric material used in the composition of flexible capacitive pressure sensors dedicated to wearable use. A fabrication process allowing the porosity of the foams to be adjusted was proposed and the fabricated foams were characterized. Then, elementary capacitive pressure sensors (15 × 15 mm2 square shaped electrodes) were elaborated with fabricated foams (5 mm or 10 mm thick) and were electromechanically characterized. Since the sensor responses under load are strongly non-linear, a behavioral non-linear model (first order exponential) was proposed, adjusted to the experimental data, and used to objectively estimate the sensor performances in terms of sensitivity and measurement range. The main conclusions of this study are that the porosity of the PDMS foams can be adjusted through the sugar:PDMS volume ratio and the size of sugar crystals used to fabricate the foams. Additionally, the porosity of the foams significantly modified the sensor performances. Indeed, compared to bulk PDMS sensors of the same size, the sensitivity of porous PDMS sensors could be multiplied by a factor up to 100 (the sensitivity is 0.14 %.kPa−1 for a bulk PDMS sensor and up to 13.7 %.kPa−1 for a porous PDMS sensor of the same dimensions), while the measurement range was reduced from a factor of 2 to 3 (from 594 kPa for a bulk PDMS sensor down to between 255 and 177 kPa for a PDMS foam sensor of the same dimensions, according to the porosity). This study opens the way to the design and fabrication of wearable flexible pressure sensors with adjustable performances through the control of the porosity of the fabricated PDMS foams.


Sign in / Sign up

Export Citation Format

Share Document