polymer foams
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 76)

H-INDEX

41
(FIVE YEARS 7)

2022 ◽  
pp. 1-16
Author(s):  
Suprakas Sinha Ray ◽  
Ritima Banerjee
Keyword(s):  

2021 ◽  
Vol 04 ◽  
Author(s):  
Ouassim Hamdi ◽  
Denis Rodrigue

: Auxetic materials have high potential due to their exceptional properties resulting from their negative Poisson ratio. Recently, several auxetic polymer-based materials have been developed. In fact, several applications are looking for a lightweight (less material consumed in production and transport) while having high mechanical performances (impact absorption, rigidity, strength, resistance, etc.). So, a balance between density and toughness/strength is of high importance, especially for military, sporting, and transport applications. So auxetic materials (especially foams) can provide high impact protection while limiting the material’s weight. This article presents a review of recent advances with a focus on auxetic polymers, with particular emphasis on the auxetic polymer foams in terms of their fabrication methods and processing conditions (depending on the nature of the cellular structure), the effect of the fabrication parameters on their final properties, as well as their models and potential applications.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6701
Author(s):  
Dmitry Zimnyakov ◽  
Marina Alonova ◽  
Ekaterina Ushakova ◽  
Sergey Volchkov ◽  
Olga Ushakova ◽  
...  

Microscopic structural rearrangements in expanding polylactide foams were probed using multiple dynamic scattering of laser radiation in the foam volume. Formation and subsequent expansion of polylactide foams was provided by a rapid or slow depressurization of the “plasticized polylactide–supercritical carbon dioxide” system. Dynamic speckles induced by a multiple scattering of laser radiation in the expanding foam were analyzed using the stacked speckle history technique, which is based on a joint mapping of spatial–temporal dynamics of evolving speckle patterns. A significant decrease in the depressurization rate in the case of transition from a rapid to slow foaming (from 0.03 MPa/s to 0.006 MPa/s) causes dramatic changes in the texture of the synthesized stacked speckle history maps. These changes are associated with transition from the boiling dynamics of time-varying speckles to their pronounced translational motions and are manifested as significant slopes of individual speckle traces on the recovered stacked speckle history maps. This feature is interpreted in terms of the actual absence of a new cell nucleation effect in the expanding foam upon slow depressurization on the dynamic scattering of laser radiation.


Author(s):  
Henry T. Beaman ◽  
Ellen Shepherd ◽  
Joshua Satalin ◽  
Sarah Blair ◽  
Harry Ramcharran ◽  
...  

Author(s):  
Soyoung E. Seo ◽  
Younghoon Kwon ◽  
Neil D. Dolinski ◽  
Caitlin S. Sample ◽  
Jeffrey L. Self ◽  
...  

Author(s):  
Anand Utpal Vakil ◽  
Natalie Marie Petryk ◽  
Ellen Shepherd ◽  
Henry T. Beaman ◽  
Priya S. Ganesh ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2416
Author(s):  
Teijo Rokkonen ◽  
Pia Willberg-Keyriläinen ◽  
Jarmo Ropponen ◽  
Tero Malm

Polymer foams are widely used in several fields such as thermal insulation, acoustics, automotive, and packaging. The most widely used polymer foams are made of polyurethane, polystyrene, and polyethylene but environmental awareness is boosting interest towards alternative bio-based materials. In this study, the suitability of bio-based thermoplastic cellulose palmitate for extrusion foaming was studied. Isobutane, carbon dioxide (CO2), and nitrogen (N2) were tested as blowing agents in different concentrations. Each of them enabled cellulose palmitate foam formation. Isobutane foams exhibited the lowest density with the largest average cell size and nitrogen foams indicated most uniform cell morphology. The effect of die temperature on foamability was further studied with isobutane (3 wt%) as a blowing agent. Die temperature had a relatively low impact on foam density and the differences were mainly encountered with regard to surface quality and cell size distribution. This study demonstrates that cellulose palmitate can be foamed but to produce foams with greater quality, the material homogeneity needs to be improved and researched further.


Author(s):  
Huan Jiang ◽  
Aaron Coomes ◽  
Zhennan Zhang ◽  
Hannah Ziegler ◽  
Yanyu Chen

Sign in / Sign up

Export Citation Format

Share Document