Renewable Hydrogen Production Using Sailing Ships

Author(s):  
Max F. Platzer ◽  
Nesrin Sarigul-Klijn ◽  
J. Young ◽  
M. A. Ashraf ◽  
J. C. S. Lai

Vast ocean areas of planet Earth are exposed year-round to strong wind currents. We suggest that this untapped ocean wind power be exploited by the use of sailing ships. The availability of constantly updated meteorological information makes it possible to operate the ships in ocean areas with optimum wind power so that the propulsive ship power can be converted into electric power by means of ship-mounted hydro-power generators. Their electric power output then is fed into ship-mounted electrolyzers to convert sea water into hydrogen and oxygen. In this paper we estimate the ship size, sail area and generator size to produce a 1.5 MW electrical power output. We describe a new oscillating-wing hydro-power generator and present results of model tests obtained in a towing tank. Navier-Stokes computations are presented to provide an estimate of the power extraction efficiency and drag coefficient of such a generator which depends on a range of parameters such as foil maximum pitch angles, plunge amplitude, phase between pitch and plunge and load. Also, we present a discussion of the feasibility of sea water electrolysis and of the re-conversion of hydrogen and oxygen into electricity by means of shore-based hydrogen-oxygen power plants.

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Max F. Platzer ◽  
Nesrin Sarigul-Klijn ◽  
J. Young ◽  
M. A. Ashraf ◽  
J. C. S. Lai

Vast ocean areas of planet Earth are exposed year-round to strong wind currents. We suggest that this untapped ocean wind power be exploited by the use of sailing ships. The availability of constantly updated meteorological information makes it possible to operate the ships in ocean areas with optimum wind power so that the propulsive ship power can be converted into electric power by means of ship-mounted hydro-power generators. Their electric power output then is fed into ship-mounted electrolyzers to convert sea water into hydrogen and oxygen. In this paper, we estimate the ship size, sail area, and generator size to produce a 1.5 MW electrical power output. We describe a new oscillating-wing hydro-power generator and present results of model tests obtained in a towing tank. Navier-Stokes computations are presented to provide an estimate of the power extraction efficiency and drag coefficient of such a generator which depends on a range of parameters such as foil maximum pitch angles, plunge amplitude, phase between pitch and plunge and load. Also, we present a discussion of the feasibility of sea water electrolysis and of the reconversion of hydrogen and oxygen into electricity by means of shore-based hydrogen-oxygen power plants.


Author(s):  
Yih-Huei Wan ◽  
Michael Milligan ◽  
Brian Parsons

The National Renewable Energy Laboratory (NREL) started a project in 2000 to record long-term, high-frequency (1-Hz) wind power output data from large commercial wind power plants. Outputs from about 330 MW of wind generating capacity from wind power plants in Buffalo Ridge, Minnesota, and Storm Lake, Iowa, are being recorded. Analysis of the collected data shows that although very short-term wind power fluctuations are stochastic, the persistent nature of wind and the large number of turbines in a wind power plant tend to limit the magnitudes and rates of changes in the levels of wind power. Analyses of power data confirm that spatial separation greatly reduces variations in the combined wind power output relative to output from a single wind power plant. Data show that high frequency variations of wind power from two wind power plants 200 km apart are independent of each other, but low frequency power changes can be highly correlated. This fact suggests that time-synchronized power data and meteorological data can aid in the development of statistical models for wind power forecasting.


2019 ◽  
Vol 11 (2) ◽  
pp. 129-137
Author(s):  
Nurul Dyah Pratiwi ◽  
Isdiyato Isdiyato

Microhydro power plant (MPP) is a small-scale power plant that uses water energy. The process of energy change occurs in a device called a synchronous generator. when the synchronous generator is given an arbitrary load, then the voltage will change. These results cause voltage and frequency instability. This research was conducted to analyze the voltage and frequency instability in MPP. The research method used in this research is descriptive quantitative approach in the village of Soko Kembang, Petungkriyono District, Pekalongan Regency, Central Java. This study provides an overview and explanation of the problems regarding the voltage and frequency instability of Micro Hydro Power Plants. The results of this study are the highest and lowest voltage / frequency instability values, namely 235 volts / 51 Hz and 160 volts / 44 Hz, due to the influence of changes in load current, which can affect the rotational speed of the generator changes, resulting in unstable voltage and frequency generated by the generator, the rotational speed of the generator changes, resulting in unstable voltage and frequency generated by the generator. The solution is  add water power to rotate the shaft of the turbine and generator to be tighter, so that it can reduce the value of the decrease in electric power by losses to the turbine and generator. Large electric power can increase voltage and frequency without having to adjust the load, and the need for improvement of the ELC system in order to get a more effective value of voltage and frequency stability.  


Author(s):  
Hitoshi Ohata ◽  
Toshikazu Nishibata ◽  
Tetsuya Onose

Reactor thermal power uprate (Power uprate) of operating light water reactors has long successful experiences in many nuclear power plants in the United States of America and European countries since late 1970’s. And it will be also introduced in Japan soon. This paper mainly describes the outline of the attempt of five-percent reactor thermal power uprate of Tokai No.2 Nuclear Power Station (Tokai-2) operated by the Japan Atomic Power Company (JAPC). It will be the leading case in Japan. Tokai-2 is GE type Boiling Water Reactor (BWR) of 1100 MW licensed electric power output and it commenced commercial operation in November 28, 1978. Power uprate is an effective approach for increasing electric power output. And it is recognized as one of the measures for effective and efficient use of existing Japanese operating nuclear power plants. It can contribute to inexpensive and stable electric power supply increase. Especially “Stretch Power Uprate (SPU)” requires only minor equipment modification or component replacement. It is also a countermeasure against global warming. Therefore it is a common theme to be accomplished in the near future for both Japanese electric power companies and government. JAPC started feasibility studies on power uprate in 2003. And in 2007, JAPC established a plan to achieve five-percent power uprate in Tokai-2 and announced this project to the public. This is a leading attempt in the Japanese electric power companies and it is the first case under the current Japanese regulatory requirements. In this plan, JAPC reflected lessons learned from preceding nuclear power plants in the United States and European countries, and tried to make most use of the performance of existing systems and components in Tokai-2 which have been periodically or timely renewed by utilizing more reliable and efficient design. JAPC plans to submit application documents to amend current License for Reactor Establishment Permit shortly. It will contain a complete set of revised safety analysis results based on the uprated reactor thermal power condition. Successful introduction of Tokai-2 power uprate will contribute to the establishment of regulatory process for power uprate in Japan and following attempts by other Japanese electric power companies.


2021 ◽  
Vol 24 (3) ◽  
pp. 21-26
Author(s):  
Viktor H. Subotin ◽  
◽  
Oleksandr S. Burakov ◽  
Viktor M. Iefymenko ◽  
Andrii Yu. Starchenko ◽  
...  

The main objectives of the reconstruction are stated. Those are: increase of the service life of the hydro-turbines of Dnipro Cascade, enhancement of their efficiency, power, and environmental safety, extension of the power control range of the hydro-power plants, assurance of the reliability and improvement of the operating safety of their equipment and structures, meeting the environmental requirements, improvement of the quality of the generated electric power after control system rehabilitation. The article deals with and analyses the chronology of the creation of the optimal design for a vertical Kaplan hydro-unit oil piping taking into consideration the half a century operational experience and stages of hydro-turbine modernization for Dnipro-2 HPP. The experience in improvement of the hydro-unit and oil head system control design is generalized, from the unified solution to the creation of the all-new design. The methods of the oil system rod machining and preliminary control are amended. The temperature control of the automatic unit shutdown in case of heating of oil head bushes is introduced into the control system. The oil piping installation method is improved and step-by-step checking of the oil piping installation centering is introduced. As a result of implementation of a package of design and process engineering solutions, the optimal design of the oil piping of improved reliability was created. It decreased the unscheduled downtime of the units and cut expenses on their maintenance providing the cyclic recurrence recommended by the standards for the operation of the oil pressure device pumps and thus, decreased the electric power consumption for balance-of-plant needs. The objects of the implementation of the developed oil piping design are given.


Sign in / Sign up

Export Citation Format

Share Document