A Numerical Study of Assisting and Opposing Mixed Convective Heat Transfer From a Horizontal Isothermal High Aspect Ratio Rectangular Cylinder

Author(s):  
Patrick H. Oosthuizen

Mixed convective heat transfer from an isothermal cylinder with a rectangular cross-section and a relatively large height-to-width ratio has been numerically studied. The axis of the cylinder is horizontal with the longer sides of the rectangular cylinder being vertical. There is a vertical forced flow over the cylinder. The flow conditions considered are such that in general mixed forced and natural convective flow exists. Both the case where the buoyancy forces act in the same direction as the forced flow (assisting flow) and the case where they act in the opposite direction to the forced flow (opposing flow) have been considered. The flow has been assumed to be two-dimensional and the Boussinesq approximation has been adopted. Attention has been restricted to the flow of air and results have therefore been obtained for a Prandtl number of 0.74. The flow conditions considered are such that laminar or turbulent flow can exist. The main attention is this work has been directed at determining the effect of the flow parameters on the mean heat transfer rate from the cylinder and on determining the conditions under which the flow can be assumed to be forced convective and under which it can be assumed to be natural convective.

2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Yunfei Xing ◽  
Fengquan Zhong ◽  
Xinyu Zhang

Three-dimensional turbulent forced convective heat transfer and its flow characteristics in helical rectangular ducts are simulated using SST k–ω turbulence model. The velocity field and temperature field at different axial locations along the axial direction are analyzed for different inlet Reynolds numbers, different curvatures, and torsions. The causes of heat transfer differences between the inner and outer wall of the helical rectangular ducts are discussed as well as the differences between helical and straight duct. A secondary flow is generated due to the centrifugal effect between the inner and outer walls. For the present study, the flow and thermal field become periodic after the first turn. It is found that Reynolds number can enhance the overall heat transfer. Instead, torsion and curvature change the overall heat transfer slightly. But the aspect ratio of the rectangular cross section can significantly affect heat transfer coefficient.


Author(s):  
Patrick H. Oosthuizen

Natural convective heat transfer from isothermal rectangular cylinders which have an exposed upper surface has been numerically studied. The cylinders considered have high aspect ratios, i.e., have high width-to-depth ratios, and are relatively short, i.e., have a “height” that is of the same order of magnitude as their width. The cylinders considered are mounted on a plane adiabatic base, the cylinders being normal to the plane base with the cylinders pointing either vertically upwards or vertically downwards. One of the main aims of the present work was to numerically determine how the depth-to-width ratio of the rectangular cylinder influences the mean heat transfer rate from the cylinder when this depth-to-width ratio is large. The flow has also been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. The solution has been obtained by numerically solving the governing equations using the commercial CFD solver, ANSYS FLUENT©. The solution is dependent on the Rayleigh number, the ratio of the width to the height of the heated cylinder, the ratio of the width to the depth of the heated cylinder, the Prandtl number, Pr, and on whether the cylinder is pointing vertically upwards or vertically downwards. Because of the applications that motivated this study, results have only been obtained for a Prandtl number of 0.74, i.e., effectively the value for air. A range of the other governing parameters has been considered and the effects of these governing parameters on the Nusselt number variation have been examined.


Author(s):  
Patrick H. Oosthuizen ◽  
Jane T. Paul

Natural convective heat transfer from a wide isothermal plate which has a “wavy” surface, i.e., has a surface which periodically rises and falls, has been numerically studied. The surface waves run in the horizontal direction, i.e., are normal to the direction of flow over the surface, and have relatively small amplitude. Attention has been restricted to the case where the waves have a rectangular cross-sectional shape. The plate is, in general, inclined to the vertical, consideration only being given to inclination angles at which the heated plate is facing upwards. The range of Rayleigh numbers considered extends from values that for a non-wavy vertical plate would be associated with laminar flow to values that would be associated with fully turbulent flow. The flow has been assumed to be steady and fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces, this being treated by means of the Boussinesq approximation. The Reynolds averaged governing equations in conjunction with a standard k-epsilon turbulence model with buoyancy force effects fully accounted for have been used in obtaining the solution. The governing equations have been solved using the commercial cfd code FLUENT. The solution has the following parameters: (i) the Rayleigh number based on the height of the heated plate, (ii) the Prandtl number, (iii) the ratios of the amplitude of the surface waviness and of the pitch of the surface waves to the height of the plate, and (iv) the angle of inclination of the plate to the vertical. Results have only been obtained for a Prandtl number of 0.74. The effects of the other dimensionless variables on the mean surface Nusselt number have been numerically studied.


Sign in / Sign up

Export Citation Format

Share Document