Thermal Convection in an Enclosure With Sinusoidal Bottom Wall Temperature: Effect of Vibrating Side Wall

Author(s):  
Murat K. Aktas

The effects of a vibrating side wall on flow structure and heat transport in an air-filled two dimensional rectangular shallow enclosure with sinusoidal spatial bottom wall temperature distribution is studied numerically. The vibrating side wall induces an oscillating flow having nonzero mean component in the enclosure. The side walls of the enclosure are adiabatic. The top wall is isothermal and kept at initial temperature. The fully compressible form of the Navier–Stokes equations are considered to predict the oscillatory and time averaged mean flow fields. A control-volume method based, explicit computational scheme is used to simulate the convective transport in the enclosure. The simulation results of a test case for an unheated enclosure are compared with the existing literature for code validation. The sinusoidal temperature gradient of the bottom wall strongly affects the flow structures and velocities. The mean fluid motion significantly alters the overall heat transfer from the bottom wall.

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Saeid R. Angeneh ◽  
Murat K. Aktas

Abstract The influence of hydrodynamically developing nonzero mean acoustic streaming motion on transient convective heat transfer in an air-filled rectangular enclosure is studied numerically. The enclosure is two-dimensional with sinusoidal bottom wall spatial temperature distribution. The oscillatory flow under relatively large Womersley number regime conditions is actuated by the periodic vibrations of the enclosure side wall. The side walls of the enclosure are adiabatic, while the top wall is isothermal. The compressible form of the Navier–Stokes equations is considered to predict the oscillatory- and time-averaged mean flow fields. A control-volume method based explicit computational scheme is used to simulate the convective transport in the enclosure. The longitudinal and the transverse temperature gradients strongly affect the flow structure in the enclosure. The mean fluid motion alters the heat transfer behavior compared to the pure conduction.


Author(s):  
Murat K. Aktas ◽  
Turkuler Ozgumus

The effects of classical and irregular acoustic streaming structures on convective heat transport in air-filled two dimensional rectangular enclosures are investigated numerically. The oscillatory fluid motion and the resulting streaming motion are driven by cyclic vibration of the enclosure left wall. The fully compressible form of the Navier – Stokes equations are employed to model the transport phenomenon in the enclosure. An explicit time-marching Flux-Corrected Transport (FCT) Algorithm is used to simulate the oscillatory flow field, streaming patterns and associated thermal convection in the enclosure. The vertical walls of enclosure are thermally insulated. The bottom wall is heated isothermally while the top wall is kept at the initial temperature. The transverse temperature gradients strongly affect the acoustic streaming velocities and structures. The irregular streaming significantly augments the heat transfer from the enclosure bottom wall.


1985 ◽  
Vol 40 (8) ◽  
pp. 789-799 ◽  
Author(s):  
A. F. Borghesani

The Navier-Stokes equations for the fluid motion induced by a disk rotating inside a cylindrical cavity have been integrated for several values of the boundary layer thickness d. The equivalence of such a device to a rotating disk immersed in an infinite medium has been shown in the limit as d → 0. From that solution and taking into account edge effect corrections an equation for the viscous torque acting on the disk has been derived, which depends only on d. Moreover, these results justify the use of a rotating disk to perform accurate viscosity measurements.


1999 ◽  
Vol 5 (1) ◽  
pp. 17-33 ◽  
Author(s):  
Y. S. Choi ◽  
S. H. Kang

A computer code predicting the flows through the centrifugal compressor with the radial vaneless diffuser was developed and applied to investigate the detailed flowfields, i.e., secondary flows and jet-wake type flow pattern in design and off-design conditions. Various parameters such as slip factors, aerodynamic blockages, entropy generation and two-zone modeling which are widely used in design and performance prediction, were discussed.A control volume method based on a general curvilinear coordinate system was used to solve the time-averaged Navier–Stokes equations and SIMPLER algorithm was used to solve the pressure linked continuity equation. The standardk-εturbulence model was used to obtain the eddy viscosity. Performance of the code was verified using the measured data for the Eckardt impeller.


1965 ◽  
Vol 69 (658) ◽  
pp. 714-718 ◽  
Author(s):  
Ronald D. Mills

The Navier-Stokes equations are solved iteratively on a small digital computer for the class of flows generated within a rectangular “cavity” by a surface passing over its open end. Solutions are presented for depth/breadth ratios ƛ=0.5 (shallow), 10 (square), 20 (deep) and Reynolds number 100. Flow photographs ore obtained which largely confirm the predicted flows. The theoretical velocity profiles and pressure distributions through the centre of the vortex in the square cavity are calculated.In an appendix an improved finite difference formula is given for the vorticity generated at a moving boundary.Since Thorn began his pioneering work some thirty-five years ago the number of numerical solutions which have been obtained for the equations of incompressible viscous fluid motion remains small (see bibliographies of Thom and Apelt, Fromm). The known solutions are principally for steady streaming flows, although two methods have now been used with success for non-steady flows (Payne jets and Fromm flow past obstacles). By contrast this paper is concerned with the class of closed flows generated in a rectangular region of varying depth/breadth ratio by a surface passing over an open end. This problem has been considered for a number of reasons.


1992 ◽  
Vol 114 (4) ◽  
pp. 936-943 ◽  
Author(s):  
Z. F. Dong ◽  
M. A. Ebadian

This paper numerically investigates the effects of buoyancy on fully developed laminar flow in a curved duct with an elliptic cross section. The flow of Newtonian fluids is assumed steady in terms of Boussinesq approximation. The curved elliptic duct is subjected to thermal boundary conditions of axially uniform heat flux and peripherally uniform wall temperature. The numerically generated boundary-fitted coordinate system is applied to discretize the solution domain of the elliptic duct, and the Navier-Stokes equations and the energy equation, including the curvature ratio, are solved by use of the control volume-based finite difference method. The solution covers a wide range of curvature ratios, and Dean and Grashof numbers. The results presented are displayed graphically and in tabular form to illustrate the buoyancy effect. It is further shown that buoyancy acts to increase both the Nusselt number and the friction factor and changes the distribution of the velocity and the temperature. The results for the curved circular duct with and without buoyancy are compared with the data available in the open literature for all cases. Also compared with the published data are the results of laminar flow in a curved elliptic duct, and very good agreement is obtained.


1972 ◽  
Vol 94 (2) ◽  
pp. 467-472 ◽  
Author(s):  
D. A. P. Jayasinghe ◽  
H. J. Leutheusser

This paper deals with elastic waves which may be generated in a fluid by the sudden movement of a flow boundary. In particular, an analysis of the classical piston, or signalling problem is presented for the special case of arbitrary velocity input into a stationary fluid contained in a circular, semi-infinite waveguide. The decay of the pulse, as well as the resulting flow development in the inlet region of the pipe are analyzed by means of an asymptotic expansion of the suitably nondimensionalized Navier-Stokes equations for a compressible, nonheat-conducting Newtonian fluid. The results differ significantly from those of the more conventional one-dimensional approach based on the so-called telegrapher’s equation of mathematical physics. The present theory realistically predicts the growth of a boundary layer both in time and position and, hence, it appears to represent the transient fluid motion in a manner which is physically more appealing.


2014 ◽  
Vol 16 (5) ◽  
pp. 901-918 ◽  

<div> <p>Three-dimensional calculations were performed to simulate the flow around a cylindrical vegetation element using the Scale Adaptive Simulation (SAS) model; commonly, this is the first step of the modeling of the flow through multiple vegetation elements. SAS solves the Reynolds Averaged Navier-Stokes equations in stable flow regions, while in regions with unstable flow it goes unsteady producing a resolved turbulent spectrum after reducing eddy viscosity according to the locally resolved vortex size represented by the von Karman length scale. A finite volume numerical code was used for the spatial discretisation of the rectangular computational domain with stream-wise, cross-flow and vertical dimensions equal to 30D, 11D and 1D, respectively, which was resolved with unstructured grids. Calculations were compared with experiments and Large Eddy Simulations (LES). Predicted overall flow parameters and mean flow velocities exhibited a very satisfactory agreement with experiments and LES, while the agreement of predicted turbulent stresses was satisfactory. Calculations showed that SAS is an efficient and relatively fast turbulence modeling approach, especially in relevant practical problems, in which the very high accuracy that can be achieved by LES at the expense of large computational times is not required.</p> </div> <p>&nbsp;</p>


2017 ◽  
Vol 826 ◽  
pp. 396-420 ◽  
Author(s):  
M. Bouyges ◽  
F. Chedevergne ◽  
G. Casalis ◽  
J. Majdalani

This work introduces a similarity solution to the problem of a viscous, incompressible and rotational fluid in a right-cylindrical chamber with uniformly porous walls and a non-circular cross-section. The attendant idealization may be used to model the non-reactive internal flow field of a solid rocket motor with a star-shaped grain configuration. By mapping the radial domain to a circular pipe flow, the Navier–Stokes equations are converted to a fourth-order differential equation that is reminiscent of Berman’s classic expression. Then assuming a small radial deviation from a fixed chamber radius, asymptotic expansions of the three-component velocity and pressure fields are systematically pursued to the second order in the radial deviation amplitude. This enables us to derive a set of ordinary differential relations that can be readily solved for the mean flow variables. In the process of characterizing the ensuing flow motion, the axial, radial and tangential velocities are compared and shown to agree favourably with the simulation results of a finite-volume Navier–Stokes solver at different cross-flow Reynolds numbers, deviation amplitudes and circular wavenumbers.


Author(s):  
Djordje Romanic ◽  
Horia Hangan

Analytical and semi-empirical models are inexpensive to run and can complement experimental and numerical simulations for risk analysis-related applications. Some models are developed by employing simplifying assumptions in the Navier-Stokes equations and searching for exact, but many times inviscid solutions occasionally complemented by boundary layer equations to take surface effects into account. Other use simple superposition of generic, canonical flows for which the individual solutions are known. These solutions are then ensembled together by empirical or semi-empirical fitting procedures. Few models address turbulent or fluctuating flow fields, and all models have a series of constants that are fitted against experiments or numerical simulations. This chapter presents the main models used to provide primarily mean flow solutions for tornadoes and downbursts. The models are organized based on the adopted solution techniques, with an emphasis on their assumptions and validity.


Sign in / Sign up

Export Citation Format

Share Document