Shell Side Flow and Heat Transfer Performances of Trisection Helical Baffle Heat Exchangers

Author(s):  
Yaping Chen ◽  
Cong Dong ◽  
Jiafeng Wu

The flow and heat transfer performances of three trisection helical baffle heat exchangers with different baffle shapes and assembly configurations, and a continuous helical baffle scheme with approximate spiral pitch were numerically simulated. The four schemes are two trisection helical baffle schemes of baffle incline angle of 20° with a circumferential overlap baffle scheme (20°TCO) and a end-to-end helical baffle scheme (20°TEE), a trisection mid-overlap helical baffle scheme with baffle incline angle of 36.2° (36.2°TMO), and a continuous helical baffle scheme with baffle helix angle of 16.8° (18.4°CH). The pressure or velocity nephograms with superimposed velocity vectors for meridian slice M1, transverse slices f and f1, and unfolded concentric hexagonal slices H2 and H3 are presented. The Dean vortex secondary flow field, which is one of the key mechanisms of enhancing heat transfer in heat exchangers, is clearly depicted showing a single vortex is formed in each baffle pitch cycle. The leakage patterns are demonstrated clearly on the unfolded concentric hexagonal slices. The results show that the 20°TCO and 18.4°CH schemes rank the first and second in shell-side heat transfer coefficient and comprehensive indexes ho/Δpo and ho/Δpo1/3. The 20°TEE scheme without circumferential overlap is considerably inferior to the 20°TCO scheme. The 36.2°TMO scheme is the worst in both shell-side heat transfer coefficient and comprehensive index ho/Δpo1/3.

Author(s):  
Yaping Chen ◽  
Ruibing Cao ◽  
Jiafeng Wu ◽  
Cong Dong ◽  
Yanjun Sheng

A set of experiments were conducted on the circumferential overlap trisection helical baffle heat exchangers with inclined angles of 20°, 24°, 28° and 32° single-thread and inclined angle of 32° dual-thread one, and a segmental baffle heat exchanger as a contrast scheme. The cylinder case of the testing heat exchanger is a common shell, while the tube bundle core could be replaced. The shell side heat transfer coefficient ho is obtained by subtract tube-side convection thermal resistance and tube wall conduction resistance from the overall heat transfer coefficient K. The curves of shell side heat transfer coefficient ho, pressure drop Δpo, Nusselt number Nuo, and axial Euler number Euz,o are presented versus axial Reynolds number Rez,o. A comprehensive performance index Nuo/Euz,o is suggested to demonstrate the integral properties of both heat transfer and flow resistance of different schemes, and the curves of Nuo/Euz,o versus Rez,o of the different schemes are presented. The results show that the scheme with inclined angle 20° performs better than other schemes, and the scheme with inclined angle 24° ranks the second, however the segment scheme ranks the last. The curves of Nuo/Euz,o of both schemes with inclined angle 32° of single-thread and dual-thread are almost coincident, even though their heat transfer coefficient and pressure drop curves are quite different. The results indicate also that for the circumferential overlap trisection helical baffle schemes the optimal inclined angle is around 20° instead of around 40° as rated by many literatures for the quadrant helical baffle schemes.


2007 ◽  
Vol 129 (10) ◽  
pp. 1425-1431 ◽  
Author(s):  
B. Peng ◽  
Q. W. Wang ◽  
C. Zhang ◽  
G. N. Xie ◽  
L. Q. Luo ◽  
...  

Two shell-and-tube heat exchangers (STHXs) using continuous helical baffles instead of segmental baffles used in conventional STHXs were proposed, designed, and tested in this study. The two proposed STHXs have the same tube bundle but different shell configurations. The flow pattern in the shell side of the heat exchanger with continuous helical baffles was forced to be rotational and helical due to the geometry of the continuous helical baffles, which results in a significant increase in heat transfer coefficient per unit pressure drop in the heat exchanger. Properly designed continuous helical baffles can reduce fouling in the shell side and prevent the flow-induced vibration as well. The performance of the proposed STHXs was studied experimentally in this work. The heat transfer coefficient and pressure drop in the new STHXs were compared with those in the STHX with segmental baffles. The results indicate that the use of continuous helical baffles results in nearly 10% increase in heat transfer coefficient compared with that of conventional segmental baffles for the same shell-side pressure drop. Based on the experimental data, the nondimensional correlations for heat transfer coefficient and pressure drop were developed for the proposed continuous helical baffle heat exchangers with different shell configurations, which might be useful for industrial applications and further study of continuous helical baffle heat exchangers. This paper also presents a simple and feasible method to fabricate continuous helical baffles used for STHXs.


2016 ◽  
Vol 38 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Reza Tasouji Azar ◽  
Shahram Khalilarya ◽  
Samad Jafarmadar ◽  
Faramarz Ranjbar

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 540
Author(s):  
S.M.A. Naqvi ◽  
Qiuwang Wang

The most extensively used heat exchanger in numerous research fields and industrial processes is the shell and tube heat exchanger. The selection of the baffle plays a vital role to regulate and increase the thermohydraulic performance and also to decrease fluid-induced vibrations due to shell side flow. 3-D computational fluid dynamics (CFD) and fluid-structure interaction (FSI) have been done to analyze the pressure drop, heat transfer coefficient, vortex shedding, and tube deformation due to induced vibrations among the recently developed clamping antivibration baffles with square twisted tubes, helical baffles with cylindrical tubes, and conventional segmental baffles with cylindrical tubes at different shell side flow rates by using commercial software ANSYS. Complete heat exchangers are modeled for numerical comparison; the thermohydraulic performance of the numerical model shows the suitable agreement by validating it with already published results and Esso method for single segmental baffles. It is then used to compare the performance of the same heat exchangers with CBSTT and HBCT. Thermohydraulic performance of CBSTT-STHX is better than SGCT-STHX. The heat transfer coefficient of heat exchangers with tube-to-baffle-hole clearance is higher and there is a reduction in the pressure drop compared to the results of STHXs without tube-to-baffle-hole clearance. The deformation in the tubes and vortex-induced vibrations are minimum in STHX with CBSTT than in STHXs with HBCT and SGCT.


2009 ◽  
Vol 62-64 ◽  
pp. 694-699 ◽  
Author(s):  
E. Akpabio ◽  
I.O. Oboh ◽  
E.O. Aluyor

Shell and tube heat exchangers in their various construction modifications are probably the most widespread and commonly used basic heat exchanger configuration in the process industries. There are many modifications of the basic configuration which can be used to solve special problems. Baffles serve two functions: Most importantly, they support the tubes in the proper position during assembly and operation and prevent vibration of the tubes caused by flow-induced eddies, and secondly, they guide the shell-side flow back and forth across the tube field, increasing the velocity and the heat transfer coefficient. The objective of this paper is to find the baffle spacing at fixed baffle cut that will give us the optimal values for the overall heat transfer coefficient. To do this Microsoft Excel 2003 package was employed. The results obtained from previous studies showed that to obtain optimal values for the overall heat transfer coefficient for the shell and tube heat exchangers a baffle cut of 20 to 25 percent of the diameter is common and the maximum spacing depends on how much support the tubes need. This was used to validate the results obtained from this study.


2013 ◽  
Vol 655-657 ◽  
pp. 461-464 ◽  
Author(s):  
Su Fang Song

The three-dimensional model of heat exchangers with continuous helical baffles was built. The fluid flow dynamics and heat transfer of shell side in the helical baffled heat exchanger were simulated and calculated. The velocity, pressure and temperature distributions were achieved. The simulation shows that with the same baffle pitch, shell-side heat transfer coefficient increased by 25% and the pressure drop decreases by 18% in helical baffled heat exchanger compared with segmental helical baffles. With the analyzing of the flow and heat transfer in heat exchanger in 5 different inclination angles from 11°to 21°, it can be found that both shell side heat transfer coefficient and pressure drop will reduce respectively by 86% and 52% with the increases 11°to 21°of the inclination angles. Numerical simulation provided reliable theoretical reference for further engineering research of heat exchanger with helical baffles.


Author(s):  
Desong Yang ◽  
Zhichuan Sun ◽  
Wei Li

Abstract An experimental investigation of shell-side flow condensation heat transfer was performed on advanced three-dimensional surface-enhanced tubes, including a herringbone micro-fin tube and a newly-developed 1-EHT tube. An equivalent plain tube was also tested for performance comparison. All of the test tubes have similar geometry parameters (inner diameter 11.43mm, outer diameter 12.7mm). Tests were conducted using R410A as the working fluid at a condensation saturation temperature of 45 °C, covering the mass flux range of 10–55 kg/(m2·s) with an inlet quality of 0.8 and an outlet quality of 0.1. Experimental results showed that the plain tube exhibits a better condensation heat transfer performance when compared to the enhanced tubes. Moreover, the mass flux has a significant influence on the heat transfer coefficient for shell-side condensation: the condensation heat transfer coefficient of plain tube decreases when the refrigerant mass flux becomes larger, while the heat transfer coefficient of herringbone tube shows a non-monotonic trend and the heat transfer coefficient of the 1-EHT tube gets higher with increasing refrigerant mass flux. Besides, A new prediction model based on the Cavallini’s equation was developed to predict the condensing coefficient of the three test tubes, and the mean absolute error of the improved equations is less than 4%.


2012 ◽  
Vol 201-202 ◽  
pp. 107-110
Author(s):  
Xing Cao ◽  
Wen Jing Du ◽  
Lin Cheng

Numerical simulation of shell-and-tube heat exchangers with novel helical baffles was carried out by using commercial codes to study shell-side flow and heat transfer characteristics. The results show that compared with shell-and-tube heat exchangers with conventional helical baffles, the ones with novel helical baffles can efficiently reduce the leakage from triangle zone so that the distributions of both the velocity field and heat transfer on tubes are more uniform. The comparison of comprehensive performance which is evaluated by heat transfer coefficient per unit pressure drop between conventional helical baffles and novel ones indicates that the latter performs better.


Sign in / Sign up

Export Citation Format

Share Document