Long Term Simulation of Horizontal Ground Heat Exchanger for Ground Source Heat Pump

2015 ◽  
Author(s):  
Nurullah Kayaci ◽  
Hakan Demir ◽  
Ş. Özgür Atayılmaz ◽  
Özden Ağra

The earth is an energy resource which has more suitable and stable temperatures than air. Ground Source Heat Pumps (GSHPs) were developed to use ground energy for residential heating. The most important part of a GSHP is the Ground Heat Exchanger (GHE) that consists of pipes buried in the soil and is used for transferring heat between the soil and the heat exchanger of the GSHP. Soil composition, density, moisture and burial depth of pipes affect the size of a GHE. There are plenty of works on ground source heat pumps and ground heat exchangers in the literature. Most of the works on ground heat exchangers are based on the heat transfer in the soil and temperature distribution around the coil. Some of the works for thermo-economic optimization of thermal systems are based on thermodynamic cycles. GHEs is commonly sized according to short time (one year or less) simulation algorithms. Variation of soil temperature in long time period is more important and, therefore, long term simulation is required to be assure the performance of the GSHP system. In this study, long time (10 years) simulation for parallel pipe GHE of a GSHP system was performed numerically with dynamical boundary conditions. In the numerical study ANSYS CFD package was used. This package uses a technique based on control volume theory to convert the governing equations to algebraic equations so they can be solved numerically. The control volume technique works by performing the integration of the governing equations about each control volume, and then generates discretization of the equations which conserve each quantity based on control volume. Thermal boundary conditions can be defined in four different types in ANSYS Fluent: Constant heat flux, constant temperature, convection-radiation and convection. In this study, periodic variation of air temperature boundary at upper surface condition is applied, the lateral and bottom surface of the solution domain are defined as adiabatic wall type boundary condition; the pipe inner surface is taken as wall with a constant heat flux. In order to provide the periodic variation of air temperature boundary at upper surface condition a User Defined Function (UDF) was written and interpreted in ANSYS Fluent. Likewise, a UDF was also written to give constant heat flux intermittently for the pipe inner surface. Constant heat flux of 10, 20, 30 W per unit length of pipe used for calculations. Effects of distance between pipes and thermal conductivity on temperature distribution in the soil were investigated. Heat transfer in the soil is time dependent three dimensional heat conduction with dynamical boundary conditions. Temperature distribution in soil were obtained and storage effect of the soil has also been investigated. An optimization methodology based on long term simulation of GHE was suggested.

Author(s):  
Ivan Otic

Abstract One important issue in understanding and modeling of turbulent heat transfer is the behavior of fluctuating temperature close to the wall. Common engineering computational approach assumes constant heat flux boundary condition on heated walls. In the present paper constant heat flux boundary condition was assumed and effects of temperature fluctuations are investigated using large eddy simulations (LES) approach. A series of large eddy simulations for two geometries is performed: First, forced convection in channels and second, forced convection over a backward facing step. LES simulation data is statistically analyzed and compared with results of direct numerical simulations (DNS) from the literature which apply three cases of heat flux boundary conditions: 1. ideal heat flux boundary condition, 2. non-ideal heat flux boundary condition, 3. conjugate heat transfer boundary condition. For low Prandtl number flows LES results show that, despite very good agreement for velocities and mean temperature, predictions of temperature fluctuations may have strong deficiencies if simplified boundary conditions are applied.


2001 ◽  
Vol 46 (18) ◽  
pp. 1566-1568 ◽  
Author(s):  
Jianhua Du ◽  
Xuejiao Hu ◽  
Bin Ma ◽  
Wei Wu ◽  
Buxuan Wang

1986 ◽  
Vol 108 (1) ◽  
pp. 147-152 ◽  
Author(s):  
R. Sheikholeslami ◽  
A. P. Watkinson

The performance of copper and mild steel plain heat exchanger tubes and an externally finned mild steel tube was studied under calcium carbonate scaling conditions. Under a constant heat flux for 70-h periods the fouling resistance generally increased linearly with time. The effect of velocity on the rate of scale formation is presented for the three tubes and results compared with the model of Hasson.


2011 ◽  
Vol 243-249 ◽  
pp. 4998-5002
Author(s):  
Yi Jiang Wang ◽  
Guo Qing Zhou ◽  
Lei Wu ◽  
Yong Lu

With the increase of mining depth, an investigation of the convective heat transfer of airflow in deep airway is urgently required. The velocity and temperature distribution were derived by using the turbulence model for smooth tube. In order to simplify calculation and avoid the complicated calculation of integration, with the help of velocity-temperature distribution analogy, the criterion equation of convective heat transfer was obtained by using the model of constant heat flux. The coefficient of convective heat transfer between airflow and airway was calculated, and criterion correlation of convective heat transfer was regressed according to test data. Test results show that the axial temperature distribution of airflow is linear, which is encouraging agreement with theoretical calculating results. Hence model of constant heat flux is a viable method for studying the convective heat transfer of airflow in deep airway.


Sign in / Sign up

Export Citation Format

Share Document