Effects of Inlet Arrangements on Liquid-Liquid Flow Patterns in Cross-Junction Square Microchannels

Author(s):  
Jin-Yuan Qian ◽  
Zan Wu ◽  
Zhen Cao ◽  
Bengt Sunden

Due to the high surface area to volume ratios leading to intensified heat and mass transfer rates, microreactors have been subject of interest for some time. Liquid-liquid two-phase flow is a very common phenomenon in microchannels. During the scale-up using a numbering-up approach, rectangular and square microchannels are preferred to circular microchannels in terms of easier integration of the former with a less volume. Therefore, liquid-liquid two-phase flow in non-circular microchannels has been investigated recently. However, there are still gaps in the fundamental understanding of liquid-liquid two-phase flow, such as the effect of inlet junctions or arrangements on flow patterns in non-circular microchannels. The present work aims to study the effect of inlet arrangements on liquid-liquid two-phase flow dynamics and flow patterns of square glass microchannels. In this paper, oil is used as the dispersed phase and de-ionized water is used as the continuous phase. The special inlet arrangement in the cross-junction is compared to these common inlet arrangements of T-junction and cross-junction square microchannels. The effect of the inlet continuous phase velocity on the slug length is studied. Then, the slug lengths with the same inlet velocities of the three inlets and equal velocities of the two phases are carried out, respectively. Meanwhile, typical liquid-liquid flow pattern transitions are achieved at specific conditions. Finally, a special phenomenon without the droplet flow pattern is introduced, due to introduction of the novel inlet arrangement.

Author(s):  
Zan Wu ◽  
Zhen Cao ◽  
Bengt Sunden

Flow patterns for water-butanol, water-toluene and water-hexane two-phase flows were visualized in the cross-shaped junctions of three square glass microchannels with hydraulic diameters of 200 μm, 400 μm and 600 μm. Typical flow pattern maps for water-butanol two-phase flow were developed based on Capillary number of the continuous phase and Weber number of the dispersed phase, and compared with a previous flow pattern map in the literature. Three main flow pattern groups were observed, including the tubing/threading regime group, the dripping regime and the jetting regime. The geometry confinement and fluid properties affected the viscous shear and interfacial tension forces and therefore their influence on flow pattern transitions was clarified. Besides, in the dripping regime, the dimensionless slug length can be scaled as a function of the flow rate ratio and the Capillary number of the continuous phase.


Author(s):  
Aritra Sur ◽  
Dong Liu

Gas-liquid two-phase flow in microchannels with hydraulic diameters of 100–500 μm exhibits drastically different flow behaviors from its counterpart in conventional macroscopic channels. Two particular issues are how to determine the two-phase flow patterns and how to predict the two-phase pressure drop at given flow conditions in these microchannels. This paper presents an experimental study of adiabatic two-phase flow of air-water mixture in circular microchannels with inner diameters of 100, 180 and 324 μm, respectively, to investigate the effects of channel size and phase velocity on the two-phase flow pattern and pressure drop. The air and water superficial velocities were in the range of 0.01–120 m/s and 0.005–5 m/s. Two-phase flow patterns were visualized using highspeed photographic technique. Four basic flow patterns, namely, bubbly flow, slug flow, ring flow and annular flow, were observed. The two-phase flow maps were then constructed and the transition boundaries between different flow regimes were identified. It was found that the slug flow is the dominant two-phase flow pattern in microchannels, and the transition boundaries generally shift to regions of higher gas superficial velocities as the channel dimension decreases. The experimental measurements of two-phase pressure drop were compared to the predictions from the available two-phase models in the literature. Results show that the flow pattern-based models provide the best prediction of two-phase pressure drop in microchannels.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2019 ◽  
Vol 74 (10) ◽  
pp. 837-848 ◽  
Author(s):  
Yudong Liu ◽  
Dayang Wang ◽  
Yingyu Ren ◽  
Ningde Jin

AbstractDue to the complex flow structure and non-uniform phase distribution in the vertical upward gas-liquid two-phase flow, an eight-electrode rotating electric field conductance sensor is used to obtain multi-channel conductance signals. The flow patterns of the vertical upward gas-liquid two-phase flow are classified according to the images obtained from a high-speed camera. Then, we employ the multivariate weighted multi-scale permutation entropy (MWMPE) to detect the instability of flow pattern transition in the gas-liquid two-phase flow. Afterwards, we compare the results of the MWMPE with those of the single-channel weighted multi-scale permutation entropy (SCWMPE) and multivariate multi-scale sample entropy (MMSE). The comparison results indicate that, compared with the SCWMPE and MMSE, the MWMPE has superior performance in terms of the high-resolution presentation of flow instability in the gas-liquid two-phase flow. Finally, we extract the mean value of the MWMPE in whole scales and the entropy rate of the MWMPE in the small scales. The results indicate that the normalized mean value and normalized entropy rate of MWMPE are very sensitive to the transitions of flow patterns, thus allowing the detection of the instability of flow pattern transition.


Author(s):  
Claudi Marti´n-Callizo ◽  
Bjo¨rn Palm ◽  
Wahib Owhaib ◽  
Rashid Ali

The present work reports on flow boiling visualization of refrigerant R-134a in a vertical circular channel with internal diameter of 1.33 mm and 235 mm in heated length. Quartz tube with a homogeneous ITO-coating is used allowing heating and simultaneous visualization. Flow patterns have been observed along the heated length with the aid of a digital camera with close-up lenses. From the flow boiling visualization, seven distinct two-phase flow patterns have been observed: Isolated bubbly flow, confined bubbly flow, slug flow, churn flow, slug-annular flow, annular flow, and mist flow. Two-phase flow pattern observations are presented in the form of flow pattern maps. Finally, the experimental flow pattern map is compared to models developed for conventional sizes as well as to a microscale map for air-water mixtures available in the literature, showing a large discrepancy.


Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


2004 ◽  
Vol 126 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406×2.032mm2 cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Features unique to two-phase micro-channel flow were identified and employed to validate key assumptions of an annular flow boiling model that was previously developed to predict pressure drop and heat transfer in two-phase micro-channel heat sinks. This earlier model was modified based on new findings from the adiabatic two-phase flow study. The modified model shows good agreement with experimental data for water-cooled heat sinks.


Author(s):  
Bai Bofeng ◽  
Liu Maolong ◽  
Su Wang ◽  
Zhang Xiaojie

An experimental study was conducted on the air-water two-phase flow patterns in the bed of rectangular cross sections containing spheres of regular distribution. Three kinds of glass spheres with different diameters (3 mm, 6 mm, and 8 mm) were used for the establishment of the test section. By means of visual observations of the two-phase flow through the test section, it was discovered that five different flow patterns occurred within the experimental parameter ranges, namely, bubbly flow, bubbly-slug flow, slug flow, slug-annular flow, and annular flow. A correlation for the bubble and slug diameter in the packed beds was proposed, which was an extended expression of the Tung/Dhir model, Jamialahmadi’s model, and Schmidt’s model. Three correlations were proposed to calculate the void friction of the flow pattern transition in bubble flow, slug flow, and annular flow based on the bubble model in the pore region. The experimental result showed that the modified Tung and Dhir model of the flow pattern transition was in better agreement with the experimental data compared with Tung and Dhir’s model.


Sign in / Sign up

Export Citation Format

Share Document